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SUMMARY  

The objective of this dissertation is to develop time-domain behavioral models for 

I/O drivers and oscillators for fast simulation and IP protection. For oscillators, 

augmented neural networks (AugNNs) are proposed to capture the oscillatory behavior of 

fixed-frequency oscillators and VCOs. When output buffer is included as a part of the 

oscillator circuit, AugNN-based models are developed taking into account the I/O 

behavior of the oscillator. For tunable drivers with pre-emphasis, state-aware weighting 

functions are proposed, and the dynamic memory characteristics of the driverôs output 

stage are captured using recurrent neural networks (RNNs). The behavior of the tunable 

control parameters is captured. Furthermore, a transition-variational model is discussed 

for the modeling of I/O drivers under overclocking conditions. The proposed models are 

compatible with Verilog-A. 
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CHAPTER 1. INTRODUCTION  

The design process of integrated circuits (ICs) relies on the use of electronic design 

automation (EDA) tools which provide the capability of performing circuit simulations 

for functional verification. However, as complexity of IC designs increases, performing 

such analysis is becoming more and more challenging in terms of the CPU time required 

for transistor-level simulations of the circuits. Behavioral modeling plays an important 

role in the design process of ICs by reducing the CPU time for simulations. This black 

box modeling approach, which is always advantageous for intellectual property (IP) 

protection, is independent of the knowledge of the internal logic of the circuit 

components, and thus doesnôt need to have the same complexity as the transistor-level 

circuit models. Itôs worth mentioning that the behavioral model developed will be of little 

use unless it is compatible with existing commercial circuit simulation environment (e.g., 

Spectre, HSPICE, etc.). 

1.1 Background and Motivation  

1.1.1 Behavioral Modeling and Neural Networks 

The objective of behavioral modeling is to find suitable port relations similar to 

the original complex circuit such that the behavioral model is able to minimize the error 

compared to the response of the transistor-level model, as shown in Figure 1. At the same 

time, the behavioral model should be compatible with the existing circuit simulators, and 

should require less simulation time than the original circuit. 
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Figure 1 ï Behavioral modeling for time-domain analysis. 

Recently, machine learning has been widely explored in various areas of 

electronics such as modeling, optimization and inverse design [1]-[15]. Specifically, in 

behavioral modeling, artificial neural networks (ANNs) are shown to be capable of 

capturing the nonlinearities accurately [16]-[18]. Many techniques have been proposed in 

the past to develop behavioral models for nonlinear circuits using ANNs [17]-[19]. The 

advantages that ANNs provide include but are not limited to the following: Firstly, ANNs 

are universal approximators [16], [18] with bounded and monotone-increasing continuous 

nonlinear activation functions in the hidden neurons (in particular, the nonlinear function 

cannot be a polynomial, since the superposition of polynomials is still a polynomial), 

which ensures the effectiveness and flexibility for fitting the model components. 

Secondly, there are several well developed techniques (testing during training, 

regularization, etc.) devised for the training of ANNs to avoid overfitting the target 

functions, which provides the generalization capability of ANNs for multivariate 

modeling. Furthermore, compared to table-formatted models, ANNs, which can be 
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readily implemented in Verilog-A [20] using the common built-in mathematical functions 

and operators, are flexible to use and require less coefficients (just need network bias and 

weight values). Based on the above observations, ANNs are selected as the model 

architecture for the proposed work. 

1.1.2 Modeling of Oscillators 

In the design process of ICs, highly sophisticated transistor-level models are used. 

The entire mixed-signal circuit simulation sometimes can be dominated by certain circuit 

blocks like oscillators which is a key component in analog or digital phase-locked loops 

(PLLs). Behavioral modeling of oscillators plays an important role by reducing the CPU 

time for simulations.  

In [21], a behavioral model is developed for a fixed-frequency oscillator using 

ANNs based on state space representation. The output of the oscillator and its time 

derivatives represent the state of the system. The time-domain behavior is embodied by 

an implicit formulation of the system differential equations which are solved using a 

circuit simulator. The formulation of the system differential equations represent the 

relationship between the output signal of the oscillator, its lower-order time derivatives 

and its higher-order time derivatives, which are learnt using ANNs. This state space 

approach, however, has its limitations. The shape of the oscillatory waveform is critical 

for the success of the state space model. Reference [22] shows an example of a 

trapezoidal oscillatory waveform, where the oscillator output stays invariant and all the 

derivatives go to zero in the plateau region as shown in Figure 2, and as a result, itôs 

impossible for the model to trigger the transition of the system state. 
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Figure 2 ï Trapezoidal output waveform of an oscillator. 

Using a similar approach, in [23], a behavioral model is developed for a voltage-

controlled oscillator (VCO). The output of the VCO and its time derivatives are mapped 

to the higher-order time derivatives using ANNs. The difference for VCO modeling is 

that the system response is modified by a control voltage as well. Therefore, in the 

formulation of the system differential equations, the control signal is included as an 

additional input, and the ANNs need to be trained accordingly in order to capture the 

influence of the control signal on the mapping relation. However, as discussed above, this 

VCO modeling approach suffers from the same issue that it is limited by the shape of the 

target waveform, such as the trapezoidal oscillatory waveforms with flat regions. In 

addition, to properly train the ANNs for the state space equations, the training data needs 

to be generated carefully to cover all the possible area of the state space, since incomplete 

space coverage will result in the numerical solution of the differential equations deviating 

from the correct solution or failing to converge, which makes the approach difficult to 

use. 
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1.1.3 Modeling of I/O Drivers 

The transfer of large amounts of data between different components in electronic 

systems relies on high-speed links, where mixed-signal input/output (I/O) drivers play a 

critical role in generating high quality communication signals in the channel. Pre-

emphasis drivers are effective in driving signals though lossy transmission lines, and are 

useful in reducing intersymbol interference (ISI). Signal and power integrity (SPI) and 

timing analysis of digital systems in the design and optimization phase is becoming more 

and more time consuming due to the increasing complexity of driver designs. Therefore, 

being able to model pre-emphasis drivers is important in signal integrity (SI) analysis of 

digital systems. 

There exist several techniques for modeling drivers [24]-[33]. The most popular 

approach is the I/O buffer information specification (IBIS) model [34] from the 

electronics industry alliance (EIA). It is a modeling technique that provides a simple 

table-based buffer model for semiconductor devices. IBIS models can be used to 

characterize current-voltage (I-V) output curves, rising/falling transition waveforms, and 

package parasitic information of the device. IBIS models are based on DC I-V curves 

along with a set of voltage-time (V-t) curves of the driver output voltage and packaging 

parasitic information of the I/O driver. However, the defined equivalent circuit in IBIS 

model decides a-priori the physical effects taken into account, thus leaving limited ability 

to capture advanced features of modern I/O drivers. Moreover, this table-based format 

has limitations in representing characteristics with multivariate dependency (e.g., port 

voltages, control parameters, etc.). IBIS models can also be challenged in accurately 
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capturing the dynamic characteristics of drivers at high data rates, since the dynamic 

characteristics of the driver become predominant when driver excitations become fast. 

As alternative approaches for behavioral modeling, parametric and enhanced 

models have been proposed [35], [36], providing improved accuracy and variation of 

features for modeling I/O drivers of complementary metal oxide semiconductor (CMOS) 

technology. These parametric models suggest a two-piece structure, where two sub-

models are used to capture the I-V behavior of the pull-up and pull-down devices 

respectively, and are multiplied by weighting coefficients which scale the transient 

contributions of the upper and lower devicesô nonlinear current. The weighting 

coefficients, either in table format or represented using weighting functions, are 

generated corresponding to the bit sequence at the input of the driver, and containing the 

timing information of the transition events. However, these models are only applied to 

drivers without pre-emphasis. 

Based on the above approach, [37]-[39] extend the modeling method to model pre-

emphasis drivers. In these models, the same two-piece model structure are used, and the 

pre-emphasis behavior is captured using weighting signals that have the proper shape 

incorporating the multiple level states, i.e., normal high, normal low, strong high and 

strong low. These implementations assume state transitions are spaced sufficiently in 

time so that every new state transition only appears after the I/O driver has reached its 

steady state. However, these models do not address the modeling of pre-emphasis drivers 

when the bit duration is shorter than the pre-emphasis duration, where the above 

assumption is not satisfied. 
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In [40], a physics-based approach is adopted to construct a table-based empirical 

model for the simulation of digital drivers subject to overclocking conditions, where the 

identified nonlinear dynamic model operators of the input port replace the concatenated 

fixed step-input describing functions of the table-based IBIS model and of other 

parametric approaches. However, this modeling approach does not capture the pre-

emphasis characteristics of the driver, and the signals on certain internal nodes of the 

transistor-level devices are revealed and manipulated, thereby leaving this gray-box 

model unfeasible and exposing IP. Moreover, it cannot be applies to tunable drivers with 

control parameters, since the identified nonlinear dynamic model operators are not 

suitable for parameterization. 

1.2 Summary of Contributions  

The objective of this dissertation is to develop time-domain behavioral models for 

drivers and oscillators to enable fast simulation and IP protection. For oscillators, 

augmented neural networks (AugNNs) are proposed to capture the oscillatory behavior of 

fixed-frequency oscillators and VCOs. For drivers, parametric modeling approaches are 

used, and the dynamic memory characteristics of the driverôs output stage are captured 

using recurrent neural networks (RNNs). The proposed models are compatible with 

Verilog-A. In summary, the contributions of the dissertation are listed as follows: 

1. Steady-state oscillator modeling. This work proposes time-domain steady-state 

behavioral models of fixed-frequency oscillators and voltage-controlled 

oscillators, which are not limited to the shapes of the target waveforms.  
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2. Modeling of oscillators including I/O behavior. With output buffer being part of 

an oscillator circuit, the behavior of the buffer needs to be incorporated into the 

modeling of the entire oscillator design. This work proposes the modeling of 

oscillators with output buffers. 

3. Modeling of tunable drivers with pre-emphasis. SI analysis is important in the 

design of ICs. Similarly, power integrity (PI) analysis is critical considering that 

simultaneous switching noise (SSN) can have significant influence on the 

performance of circuits. Therefore, an accurate model for drivers with pre-

emphasis that can be used for both SI and PI analysis is needed. On the other 

hand, in some of the modern driver designs, advanced features emerge such as 

tunable characteristics with control parameters. The driver model developed 

would be of little use unless the tunable characteristics are captured. The 

modeling of tunable drivers with pre-emphasis for SI and PI co-simulation is 

addressed in this work. 

4. Driver modeling for overclocking analysis. When data rate becomes higher and 

higher, overclocking will occur when I/O drivers do not have enough time to 

reach steady state before the next transition. The existing approaches cannot 

accurately capture the overclocking behavior of the I/O drivers. This work 

proposes an accurate driver modeling method for overclocking analysis. 

1.3 Organization of the Dissertation  

The rest of this dissertation is organized as follows: Chapter 2 describes the 

proposed AugNNs for the modeling of oscillators with constant frequency, multi-phase 

oscillators and VCOs. Also in this chapter, AugNN-based models are presented for the 
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modeling of oscillators with output buffers. In Chapter 3, behavioral modeling of tunable 

I/O driver circuits with pre-emphasis for SPI analysis is investigated, where the influence 

of the control parameters is taken into account. A modeling methodology for I/O drivers 

under overclocking conditions is demonstrated in Chapter 4. Finally, Chapter 5 presents 

summary of this work and discussion of some related future work. 
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CHAPTER 2. STEADY-STATE MODELING OF OS CILLATORS  

2.1 Introduction  

 The design process of ICs relies on simulations using EDA tools. Performing 

these simulations for timing analysis, however, is becoming challenging in terms of the 

CPU time required. This is amplified for transistor-level simulations in the design and 

optimization phase due to increasing complexity of IC designs. The entire circuit 

simulation can be sometimes dominated by certain circuit blocks like oscillators which is 

a key component in analog or digital PLLs. Behavioral modeling techniques play an 

important role in reducing this complexity as they require less computing resources and 

still provide accurate numerical results without disclosing any internal circuitry 

information. 

 In [21] and [23], behavioral models are developed for oscillators using artificial 

neural networks based on state space representation. The output of the oscillator and its 

time derivatives represent the state of the system. The time-domain behavior is embodied 

by an implicit formulation of the system differential equations which are solved using a 

circuit simulator. This state space approach, however, has its limitations. The shape of the 

oscillatory waveform is critical for the success of the state space model. Figure 2 shows 

an example of a trapezoidal oscillatory waveform. In the plateau region, the oscillator 

output stays invariant and all the derivatives go to zero. As a result, itôs impossible to 

trigger the transition of the system using the state space approach. In this chapter, a novel 

technique is presented for the time-domain behavioral modeling of oscillators using 

AugNNs. In the proposed method, a feed-forward neural network (FFNN) with a periodic 

unit is developed based on the mathematical formulation of oscillator behavior, where the 

periodic unit can capture the periodicity of the oscillatory output waveform, and the 
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neural network is able to learn the waveform shape properly. Time step values are used as 

an input to the neural network to learn the phase information of the oscillation. The 

resulting model is a black box that hides the details of a transistor circuit and thus 

protects IP. 

2.2 Modeling of Oscillator with Constant Frequency 

2.2.1 Mathematical Model 

 The output waveform of an oscillator with constant frequency in the time-domain 

can be expressed as [41]: 

ὠ Ὂ ὑ Ὠὸȟ (1) 

where KOSC is related to the oscillation frequeny, and F() is a periodic function that 

captures the shape of the waveform. In Equation 1, the argument of F(), ὑ Ὠ᷿ὸ, is the 

total phase. The phase accumulates at a rate of KOSC, and is mapped to the output using 

F(), which is periodic. 

 To derive a behavioral model, we reformulate Equation 1 in the discrete-time 

domain as: 

ὠ ὲ Ὂ ὑ ὨὸὭ ȟ (2) 

where n is the time index in the discrete-time domain. 

2.2.2 Augmented Neural Network for Oscillators 
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In behavioral modeling, ANNs are shown to be capable of capturing the 

nonlinearities accurately [16]-[18]. ANNs provide mappings which can approximate 

input-output nonlinear functions. Since the oscillator is a one-port system, it has no input 

signal. However, it can be seen from Equation 1 that the output of the oscillator depends 

on the total phase which is a function of time step Ὠὸ. Therefore, time is an important 

input for modeling oscillators. Since the phase and time are related and the phase can be 

arbitrary, most neural networks have difficulty in capturing the relationship between 

phase information and output waveforms for oscillators. To capture the periodic 

dependence of the nonlinear behavior of the oscillator for an unbounded total phase, an 

AugNN is proposed as shown in Figure 3. 
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Figure 3 ï Proposed augmented neural network for oscillators. 

In the proposed neural network, a periodic unit is introduced and cascaded 

between the input layer and the first hidden layer of an FFNN. The input for the network 

consists of a chronologically-ordered sequence of time steps dt which is fed into the 

periodic unit. Inside the periodic unit, the integral of dt is multiplied by the frequency 

parameter K, after which the modulus operation is performed. The responses of the 

periodic unit can be computed as: 

ώ ὲ ὑ ὨὸὭ   άέὨ ρȟ (3) 
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By doing so, the unbounded total phase is mapped to the folded and normalized phase 

within a range of [0, 1). The output of the periodic unit, yp, is fed into the first hidden 

layer. The values of the nodes in the hidden and output layers are calculated using Figure 

3 as: 

ώ ὲ ὸὥὲὬ ώ ὲύ
ȟ
ὦ ȟ (4) 

where ὸὥὲὬὼ Ὡ Ὡ ȾὩ Ὡ , ώ  is the jth neuron in the current hidden 

layer, ώ  is the lth neuron of the preceding layer containing ὔ  neurons, ύ
ȟ
 is the 

weight between them and ὦ is the bias value of the current neuron. Furthermore, 

ώ ὲ ώ ὲύ ὦ ȟ (5) 

where ώ  is the neuron in the output layer, ύ  is the weight form the lth neuron of the 

precedent layer and ὦ  is the bias value of the output neuron, respectively. 

2.2.3 Neural Network Training 

Let the parameters of the augmented neural network be denoted as , 

Ἷ Ἢὑ , where w is the vector of weights, b is the vector of biases for the neurons, K 

is the frequency parameter of the periodic unit, and T denotes transpose. When a set of 

training data is fed into the input layer, the output, ώ ὲ, is compared with the desired 

output, ώ ὲ, to calculate the training error. The parameters are estimated to minimize 

the difference between the network output ώ ὲ and the transistor-level circuit data, 
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ώ ὲ. Let Nt be the number of time samples in the training dataset. The objective for 

training the AugNN model is given by: 

ÍÉÎ
ρ

ς
ώ ὲ ώ ὲ Ȣ (6) 

In order to employ efficient gradient-based training algorithms, derivatives of the 

network output with respect to each parameter in ū are required to form the Jacobian 

matrix J. A training scheme based on back propagation (BP) is used to calculate the 

derivatives for each layer.  

 

Figure 4 ï Mod function: ◐  ● □▫▀ . 

However, there are points of discontinuity in the output of mod function in the 

periodic unit. As shown in Figure 4, the function, ώ  ὼ άέὨ ρ, is discontinuous when x 

has integer values. But it is important to note that the derivative on the left side of the 

discontinuity is equal to that on the right side, which is 1 here. The same value can be 

assigned to the derivatives of the mod function at the discontinuous points to complete 

the Jacobian matrix for the periodic unit, which can be formulated as: 



 16 

ώ ὲ

ὑ

ώ ὲ

ώ ὲ

ώ ὲ

ὑ
 

ώ ὲ

ώ ὲ
 ὨὸὭȢ 

(7) 

Based on this gradient scheme, gradient-based training algorithms such as the 

Levenberg-Marquardt method can be used to train the augmented neural network model. 

Once the model is trained, it can be implemented in Verilog-A. 

2.2.4 Modeling Examples 

To quantify the accuracy of the behavioral model, a figure of merit (FOM) is 

defined as: 

Ὂὕὓ ρππϽρ
В ȿὠὶὩὪὠὈὟὝȿ

ῳὠϽὔ
ȟ (8) 

where ὠὶὩὪ and ὠὈὟὝ are the simulation output voltage data of the transistor-level 

model and the behavioral model, ῳὠ is the reference output voltage range, and N is the 

number of data points [42].  

Test case 1: In order to demonstrate the accuracy of the proposed AugNN model, 

test cases are generated using transistor-level inverter ring oscillator models provided in 

[43]. The generic schematic is shown in Figure 5. The training data is generated using 

Spectre [43].  
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Figure 5 ï Schematic of a typical inverter ring oscillator. 

In the first test case, a 0.1689 GHz inverter ring oscillator was designed. The 

transistor-level simulation data is used to train the AugNN with random initializations. 

The one time training process costs 2~3 min. In Figure 6, the output waveform achieved 

using the behavioral model with a hidden layer consisting of 10 neurons is compared to 

the transistor-level model output. It can be seen that the behavioral model is accurate and 

matches well with the actual inverter ring oscillator voltage waveform, and a FOM value 

of 99.85 is achieved. Figure 7 shows the training results of the frequency parameter K, 

which converges to 0.1689×10
9
 after several training iterations. The behavioral model 

achieves ~10X speed-up in simulation time compared to the transistor-level Spice 

oscillator circuit. 
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Figure 6 ï Test case 1 output waveforms for transistor-level oscillator model 

(straight line) and behavioral model (dotted line). 

 

Figure 7 ï Plot of the frequency parameter K during the training process. 

Test case 2: In this test case, a behavioral model of a 0.5743 GHz inverter ring 

oscillator is generated. The network model has a hidden layer of 10 neurons. As shown in 

Figure 8, the output waveform of the behavioral model matches accurately with the 

transistor-level circuit output, and a FOM value of 99.90 is achieved. 
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Figure 8 ï Test case 2 output waveforms for transistor -level oscillator model 

(straight line) and behavioral model (dotted line). 

Test case 3: In this test case, a modeling example of multi-phase oscillator is 

demonstrated. A quadrature ring oscillator as shown in Figure 9 is used for model 

validation [44], [45]. The oscillator is free running with a constant frequency and has four 

outputs. There is a phase shift of 90° between each successive output. Based on the 

proposed modeling methodology, for multi-output oscillators, an AugNN model is 

developed as shown in Figure 10. Since the outputs of the oscillator are highly correlated 

to each other with respect to the oscillation frequency, an AugNN architecture with the 

same periodic unit shared by the network outputs is necessary.  
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Figure 9 ï Schematic of a quadrature oscillator. 
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Figure 10 ï AugNN model for the quadrature oscillator. 

The network model has a hidden layer consisting of 15 neurons, and 4 output 

neurons corresponding to the quadrature outputs of the oscillator. The training data is 

generated from transistor-level simulation using Spectre. The network parameters are 

initialized randomly. A training mean squared error (MSE) of 6.25E-6 is achieved after 

several iterations, and the frequency parameter converges to 3.2249 GHz. After training, 

the model is implemented in Verilog-A, and simulated using Spectre. Figure 11 shows 

the output waveforms of the transistor-level model and the behavioral model, where a 
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good match can be observed with an MSE of 6.54E-6, and a FOM value of 99.82 is 

achieved. 

 

Figure 11 ï Output waveforms for the transistor-level model and the behavioral 

model of the quadrature oscillator. 

2.3 Modeling of Oscillator Including I/O behavior 

In ICs, buffers are widely used as the interface between the internal circuit core 

and the load at the output. Since the buffers are unidirectional, the voltage and current at 

the output port have little influence on the internal activity. In oscillator designs, output 

buffers can be employed to minimize loading of the oscillator core and generate high 

quality signals with enhanced drive strength. Figure 12 shows a scenario where a buffer 

is included in the oscillator design.  
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Figure 12 ï Oscillator circuit in cluding output buffer . 

The model illustrated above, however, does not take into account output buffer 

behavior and the associated load variations. The model needs to be extended to address 

the modeling of oscillators with output buffers. In this section, an AugNN-based model is 

discussed, where the nonlinear dynamic behavior of the output buffer is taken into 

account using RNNs, and an AugNN with multiple output units is used to capture the 

oscillatory weighting functions controlling the transitions of the buffer. 

2.3.1 Buffer Modeling 

For a buffer circuit, the current at the output port can be expressed as [35], [37]: 

Ὥὸ ύ ὸὭ ὸ ύ ὸὭὸȟ (9) 

where Ὥ ὸ and Ὥὸ are nonlinear dynamic submodels accounting for the output current 

of the last stage of the buffer when the buffer input, ὺ, is at the high (H) and low (L) 

voltage state respectively, and ύ ὸ and ύ ὸ are the weighting functions that help the 
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transitions between the two sub-models. In Equation 9, sub-model function, Ὥὸ, can be 

defined using parametric relations as: 

Ὥὸ Ὥὺ ὸȟἎȟ ὲ Ὄȟὒȟ (10) 

where ὺ ὸ is the output voltage, and Ἆ represents the dependence of sub-model current 

on the previous values of the signals, Ὥ and ὺ.  

 

Figure 13 ï Buffer output current for input HIGH from transistor -level model (solid 

line) and from RNN model (dotted line). 

For a nonlinear buffer circuit, when the buffer operation is fast, the dynamic 

characteristics of the buffer become predominant, as shown in Figure 13 where a 

piecewise-linear voltage source is connected at the buffer output port and the buffer input 

is set high. In such cases, sub-models need to be capable of capturing the nonlinearity 

associated with the dynamic response of the driver. RNNs, which include feedback paths 

allowing for taking into account the previous samples, are shown to be capable of 

modeling nonlinear dynamic circuits [19], [37]. To efficiently capture the memory effects 
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and the nonlinear dynamic behavior of the buffer, the previous time instances of the 

buffer output voltage and current are considered and the sub-models can be learnt as 

RNN models: 

Ὥὸ Ὥ
ὺ ὸȟὺ ὸ Ὤȟȣȟὺ ὸ ὶὬ

Ὥὸ ὬȟȣȟὭὸ ὶὬ
ȟ 

                                                                        Î (ȟ,ȟ 

(11) 

where ὺ is the output voltage, Ὤ is the sampling time step, and ὶ is referred to as the 

dynamic order of the model, which usually has a value of 1 or 2 for typical buffers [35]. 

It can be seen from Figure 13 that with the inclusion of two previous time instances, the 

output current values learnt by the RNN sub-model match accurately with the transistor-

level simulation results.  

For the weighting functions, ύ ὸ and ύ ὸ, the models in [35] and [37] 

assume time concatenation of the successive transients triggered by the different input 

state transitions. This approach, however, does not apply to oscillators since they do not 

have any input signals. On the other hand, the approach of directly connecting the 

oscillator model to the buffer model may not work well, when the oscillation frequency is 

high where there is not enough time for the buffer to reach steady state before each 

transition. Therefore, a different method of extracting and modeling the weighting 

functions is required. 

2.3.2 AugNN-based Model 
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Based on the above discussion, an AugNN-based model is proposed for 

oscillators with buffers, as shown in Figure 14, where the periodicity of the oscillatory 

weighting functions is captured using an AugNN with multiple output units and the 

nonlinear dynamic behavior of the output stage is captured using RNN sub-models. The 

input for the AugNN consists of a chronologically-ordered sequence of time steps which 

is mapped to the folded and normalized phase within a range of πȟρ by the periodic unit 

[22]. At the output layer, the AugNN generates the weighting coefficients, ύ ὸ and 

ύ ὸ, which scale the transient contributions of the upper and lower devicesô sub-model 

current sources, Ὥ ὸ and Ὥ ὸ, at the buffer output port. It is important to note that 

the use of one AugNN with multiple output units is necessary to ensure the two 

weighting functions oscillate at the same frequency by sharing the same periodic unit. 
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Figure 14 ï Proposed AugNN-based model for oscillators including output buffers. 

The training of the proposed model consists of two parts:  

1) RNN sub-models: The training of the RNN sub-models can be carried out by 

connecting a multilevel piecewise-linear voltage source at the buffer output port to 

generate the excitation identification signals as shown in Figure 13, with the buffer input, 

ὺ, fixed at HIGH and LOW respectively [35], [37]. Once the data is collected, RNNs in 

(11) are trained accordingly to learn the sub-models. 



 26 

2) AugNN: After the sub-models are obtained, the oscillatory weighting 

coefficients need to be extracted for AugNN training. This can be done by running the 

oscillator with the buffer output port connected to two different loads ὤ and ὤ, e.g., a 

50-ɋ resistor for load ὤ and the series connection of a ὠ  voltage source and a 50-ɋ 

resistor for load ὤ. The weighting coefficients can be extracted using the method of 

matrix inversion [35], [37]. Once the weighting functions are extracted, the AugNN can 

be trained using the gradient-based training algorithms in [22] modified for multiple 

output neurons. After the training, the behavioral model is implemented in Verilog-A. 

2.3.3 Modeling Example 

Vdd

Vss

Output

 

Figure 15 ï Ring oscillator circuit including an output buffer . 
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Figure 16 ï Weighting functions extracted (solid line) and learnt by the AugNN 

(dotted line). 

To demonstrate the accuracy and efficiency of the proposed model, a modeling 

example is generated using a transistor-level ring oscillator circuit including an output 

buffer as shown in Figure 15. The transistor-level simulation data generated using 

Spectre is used to train the model. The RNNs for sub-models contain 10 neurons in the 

hidden layer. Based on the method described in the previous section, the weighting 

coefficients are extracted as shown in Figure 16. A training root-mean-squared error 

(RMSE) of 0.0034 is achieved using an AugNN with a hidden layer consisting of 15 

neurons. The oscillation frequency is learnt by the AugNN as the parameter, in the , 

periodic unit, which is 1.9481 GHz. The RNNs and AugNN are then implemented as a 

Verilog-A model. 
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Figure 17 ï Test setup for model validation. 

 

Figure 18 ï Output voltage waveform from transistor -level model (solid line) and 

from behavioral model (dotted line). 

To test the performance of the trained model, the oscillator circuit is connected to 

a load resistor of 75 ɋ and a capacitor of 1.5 pF in parallel as shown in Figure 17, and 

simulated in Spectre. It can be seen from Figure 18 that the simulation results of the 

behavioral model match well with the transistor-level model. A FOM value of 98.047 is 

achieved in Figure 18, and the behavioral model achieves a reduction in simulation time 

of up to 96%. 
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2.4 Modeling of VCOs 

2.4.1 Mathematical Model 

The steady-state time-domain output waveforms of a VCO with multiple output 

ports can be expressed as: 

ὠ ȟ ὸȟὠ ȟ ὸȟȣȟὠ ȟ ὸ Ὂ ὸὨὸȟ (12) 

where ὸ is the instantaneous frequency, ὔ  is the number of outputs, and Ὂ  is a 

periodic function that captures the shape of the waveforms. Specifically, for an oscillator 

with fixed frequency, ὸ is a function of the ,ὸ is a constant, whereas, for a VCO 

frequency control voltage, i.e., ὸ Ὃὺ ὸ  [41]. In Equation 12, the function 

argument, ᷿.ὸ ὸὨὸ, is the total oscillation phase, which accumulates at a rate of 

The phase is mapped to the output through Ὂ , a periodic function with respect to phase. 

To derive a behavioral model, we reformulate Equation 12 in the discrete-time 

domain as: 

ὠ ȟ ὲȟὠ ȟ ὲȟȣȟὠ ȟ ὲ Ὂ ὭὨὸὭ ȟ (13) 

where ὲ is the time index in the discrete-time domain. 

2.4.2 Augmented Neural Network for VCOs 
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From Equation 13, we can see that the output of a VCO is a function of the total 

oscillation phase, which can be obtained by integrating the product of the instantaneous 

frequency and the time step dt. Therefore, time is an inherent input for modeling  

oscillators. However, the total oscillation phase is unbounded, since the phase can be 

arbitrarily large along with the increase of time. As a result, most neural networks will 

fail to capture the phase-output relation of oscillators, since the unbounded input values 

cannot be properly handled. Moreover, for oscillators with multiple ports, the outputs are 

highly correlated with each other in terms of phase. This correlation must be strictly 

retained in the behavioral model to avoid any mismatch in their instantaneous 

frequencies. To overcome these difficulties, a multi-output AugNN is proposed as shown 

in Figure 19, where a periodic unit is introduced. In the following discussion, it can be 

seen that, given the model formulations for VCOs, the model for fixed-frequency 

oscillators is a subset with the frequency .ὸ being constant 
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Figure 19 ï Proposed AugNN model for VCOs. 
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The input for the proposed AugNN consists of the chronologically-ordered 

sequence of time steps dt and the control signal which are fed into the periodic unit. The 

function of the periodic unit is to learn the instantaneous frequency and generate bounded 

oscillation phase. Since the frequency is a function of the control voltage without time 

dependency, this can be done by first capturing :using an FFNN as  

ὲ Ὣ ὺ ὲ ȟ (14) 

where Ὣ  represents the formulation of the FFNN inside the periodic unit. Then the 

product of the instantaneous frequency and the time step dt is integrated to obtain the  

total oscillation phase, after which the modulus operation is performed to map the 

unbounded total oscillation phase to the folded phase that is normalized within a range of 

πȟρ. The responses of the periodic unit can be computed as: 

ώ ὲ ὭὨὸὭ  άέὨ ρȢ (15) 

The output of the periodic unit, ◐▬, and the control signal, ○╬, are used as the input of the 

main FFNN. For an AugNN with multiple outputs, let ὔ  be the total number of the 

output neurons, and ώ ȟ ὲ be the kth output signal at the nth time sample. The values 

of the nodes in the output layer of the main FFNN are calculated using Figure 19 as: 

ώ ȟ ὲȟώ ȟ ὲȟȣȟώ ȟ ὲ Ὢ ώ ὲȟὺ ὲ ȟ (16) 
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where Ὢ  represents the formulation of the main FFNN. For the main and second 

FFNNs, the hyperbolic tangent function, ÔÁÎÈὼ Ὡ Ὡ ȾὩ Ὡ , is used as 

the activation function for the hidden neurons. 

2.4.3 AugNN Training 

The training of the network is the process of tuning the network parameters to 

minimize the difference between the transistor-level circuit data ◐▫◊◄ὲ and the network 

output ◐▫◊◄ὲ, which is defined as the squared error here. For training the multi-output 

AugNN, the objective function is given by: 

ÍÉÎ
ρ

ς
ώ ȟ ὲ ώ ȟ ὲ ȟ (17) 

where ὔ is the number of time samples in the training dataset. Itôs important to note that 

the training data fed into the network must be in the chronological order to make sure the 

phase integration is calculated correctly. Let the parameters of the AugNN be denoted as 

, ἿἙ ἪἙ ἿἜἣἪἜἣ , where ἿἙ and ἪἙ are the vectors of the weights and 

biases of the main FFNN, ἿἜἣ and ἪἜἣ are the vectors of the weights and biases of the 

second FFNN inside the periodic unit, and T denotes transpose. Gradient-based training 

algorithms can be used to optimized the network parameters, where the Jacobian matrix J 

is computed using the BP method to calculate the derivatives of the network outputs with 

respect to each parameter in . The derivatives of the FFNNs can be computed by 

normal BP [16].  
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Figure 20 ï Recurrent node representation of the integral node in the periodic unit. 

Particularly, the integral operation in the periodic unit can be represented 

equivalently using a recurrent node with a fixed recurrent weight of one, as shown in 

Figure 20. Based on this representation, the integral output, ώ , is iteratively computed 

as: 

ώ ὲ ώ ὲ ρ ὲὨὸὲȢ (18) 

However, there are discontinuity points brought by the modulus operation ώ  ὼ άέὨ ρ 

in the periodic unit, where x has integer values. In order to overcome this discontinuity 

difficulty, the value of one can be used as the derivatives of the mod function at the 

discontinuous points, which is equal to the derivatives on both the left and the right sides 

of the discontinuity. The derivatives for the periodic unit can be formulated as: 

ώ ȟ ὲ

 Ἔἣ

ώ ȟ ὲ

ά

ά

 Ἔἣ
ȟ (19) 

where Ἔἣ ἿἜἣἪἜἣ  is the vector of the parameters of the periodic unit, άȾ

 Ἔἣ can be computed for the second FFNN using BP method, and 
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ώ ȟ ὲ

ά

ώ ȟ ὲ

ώ ὲ

ώ ὲ

ά
 

ώ ȟ ὲ

ώ ὲ
 Ὠὸάȟρ Í Îȟ 

(20) 

where ώ ȟ ὲȾώ ὲ can be computed for the main FFNN using BP method. After 

this procedure, the Jacobian matrix of the kth output can be formulated as: 

J 

ụ
Ụ
Ụ
Ụ
ợ
ώ ȟ ρ

 Ἑ

ώ ȟ ς

 Ἑ
Ễ
ώ ȟ ὔ

 Ἑ

ώ ȟ ρ

 Ἔἣ

ώ ȟ ς

 Ἔἣ
Ễ
ώ ȟ ὔ

 Ἔἣ Ứ
ủ
ủ
ủ
Ủ

ȟ (21) 

where Ἑ ἿἙ ἪἙ  is the vector of parameters of the main FFNN. The entire 

Jacobian matrix is then given by: 

J J J Ễ J Ȣ (22) 

Using this gradient scheme, the gradient-based training algorithms, the Levenberg-

Marquardt method, can be applied to train the AugNN model, and the corresponding step 

 for updating the network parameters in each training iteration can be calculated as [46]: 

JJ ‘ἓ JἹȟ ‘ πȟ (23) 

where I  is the identity matrix, ‘ is the damping parameter, and 

Ñ Ñ Ñ Ễ Ñ ȟ (24) 



 35 

where 

Ñ 

ụ
Ụ
Ụ
ợ
ώ ȟ ρ ώ ȟ ρ

ώ ȟ ς ώ ȟ ς
ể

ώ ȟ ὔ ώ ȟ ὔ Ứ
ủ
ủ
Ủ

Ȣ (25) 

After training, the AugNN model can be implemented as a Verilog-A model. 

2.4.4 VCO Modeling Example 

To demonstrate the accuracy of the AugNN model, a modeling example is 

generated using a transistor-level VCO circuit model that has the lowest frequency of 

0.216 GHz and the highest frequency of 0.306 GHz with the control voltage ὺ ranging 

from 1 V to 3 V. Its simplified schematic is shown in Figure 21. 

 

Figure 21 ï Simplified schematic of the target VCO. 
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As can be seen that the VCO circuit has single output port. Therefore, the 

proposed AugNN can be simplified with single output unit as shown in Figure 22. The 

training data is generated using Spectre with ὺ varying from 3 V to 1 V in steps of -0.2 

V as shown in Figure 23. When the root-mean-squared error is expressed as a percentage 

of the peak-to-peak amplitude, a training RMSE/p-p of 0.61% is achieved using an 

AugNN containing 20 neurons in the first and 10 neurons in the second hidden layer of 

the origianl FFNN, and 5 neurons in the single hidden layer of the second FFNN in the 

periodic unit. The one time training process costs around 5 min. 

 

Figure 22 ï AugNN with single output unit for VCO modeling. 
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Figure 23 ï Training waveforms of control voltage (thick solid blue line), and the 

output of transistor-level (thin red line) and behavioral model (dotted line). 

 

Figure 24 ï Test waveforms of control voltage (thick solid blue line), and the output 

of transistor-level (thin red line) and behavioral model (dotted line). 

To test the performance of the trained model, a frequency sweep is applied by 

continuously changing ὺ between its maximum and minimum as shown in Figure 24. 

Good agreement between the output of the behavioral and transistor-level model can be 
























































































































































































