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SUMMARY

The objective of thiglissertations to develop timelomain behavioral modelsif
I/O drivers and oscillators for fast simulation and IP protectiBor oscillators,
augmented neural networks (AugNNs) are proposed to capture the oscillatory behavior of
fixed-frequency oscillators and VCO®hen output bufferis included as gart of the
oscillator circuit AugNN-based models ardevelopedtaking into account the 1/O
behavior of the oscillatoiFor tunabledriverswith preemphasisstateaware weighting
functions are proposed and the dynamic memory puthar act
stage are captured using recurrent neural networks (RNNs)behavior of the tunable
control parameters is captured. Furthermore, a transiaoational model igliscussed
for the modeling of 1/O drivers under overclocking conditiofise proposednodels are

compdible with Verilog-A.
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CHAPTER 1. INTRODUCTION

The design process of integrated circuits (ICs) relies on the use of electronic design
automation (EDA) tools which provide the capability of performing circuit simulations
for functional verification. ldwever, as complexity of IC designs increases, performing
such analysis is becoming more and more challenging in terms of the CPU time required
for transistoflevel simulations of the circuits. Behavioral modeling plays an important
role in the design prass of ICs by reducing the CPU time for simulations. This black
box modeling approach, which is always advantageous for intellectual property (IP)
protection, is independent of the knowledge of the internal logic of the circuit
component s, aneead tothdve the sdnteecampléxity as the trandestet
circuit models. Itdos worth mentioning that
use unless it is compatible with existing commercial circuit simulation environment (e.g.,

Specte, HSPICE etc.)

1.1 Background and Motivation

1.1.1 Behavioral Modeling and Neural Networks

The objective of behavioral modeling is to find suitable port relations similar to
the original complex circuit such that the behavioral model is able to minimize the error
compare to the response of the transisi@rel model, as shown Figurel. At the same
time, the behavioral model should be compatible with the existing circuit simulators, and

should require lessimulationtime than the original cir¢u
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Figure 17 Behavioral modeling for time-domain analysis.

Recently, machine learning has been widely explored in various areas of
electronics such as modeling, optimization and inverse d¢$]gi5]. Specifically, n
behavioral modeling, artificial neural networks (ANNs) are shown to be capable of
capturing the nonlinearities accuratgly]-[18]. Many techniques have been proposed in
the past to develop behavioral models for nonlinear circuits using ANNg19]. The
advantages that ANNs provide include brgnot limited to thefollowing: Firstly, ANNs
are universal approximatof$6], [18] with bounded and monototiecreasing continuous
nonlinear activation functions in the hidden neurons (in particular, the nonlinesiofun
cannot be a polynomial, since the superposition of polynomials is still a polynomial),
which ensures the effectiveness and flexibility for fitting the model components.
Secondly, there are several well developed techniques (testing during training,
regularization, etc.) devised for the training of ANNs to avoid overfitting the target
functions, which provides the generalization capability of ANNs for multivariate

modeling. Furthermore, compared to tafdematted models, ANNs, which can be



readily impgemented in VerilogA [20] using the common butih mathematical functions
and operators, are flexible to use and require less coefficients (just need network bias and
weight values). Based on the above observations, ANNss@eeted as the model

architecture for the proposed work.

1.1.2 Modeling of Oscillators

In the design process of ICs, highly sophisticated trandestet models are used.
The entire mixesbignal circuit simulation sometimes can be dominated by certain circuit
blocks like oscillators which is a key component in analog or digital gdoaked loops
(PLLs). Behavioral modeling of oscillators plays an important role by reducing the CPU

time for simulations.

In [21], a behavioral modek developed for a fixefrequency oscillator using
ANNs based on state space representation. The output of the oscillator and its time
derivatives represent the state of the system. Thedonein behavior is embodied by
an implicit formulation of the stem differential equations which are solved using a
circuit simulator. The formulation of the system differential equations represent the
relationship between the output signal of the oscillator, its lender time derivatives
and its higheorder timederivatives, which are learnt using ANNs. This state space
approach, however, has its limitations. The shape of the oscillatory waveform is critical
for the success of the state space mofeference[22] shows an example of a
trapezoidal oscillatory waveform, where the oscillator output stays invariant and all the
derivatives go to zero in the plateau regams shown inFigure 2, and as a res.|

impossible for the model to trigger the transitidrihe system state.
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Figure 271 Trapezoidal output waveform of an oscillator.

Using a similar approach, 23], a behavioral model is developed for a voltage
controlled oscillator (VCO). The output gie VCO and its time derivatives are mapped
to the highetorder time derivatives using ANNs. The difference for VCO modeling is
that the system response is modified by a control voltage as well. Therefore, in the
formulation of the system differential eafions, the control signal is included as an
additional input, and the ANNs need to be trained accordingly in order to capture the
influence of the control signal on the mapping relation. However, as discussed above, this
VCO modeling approach suffers fraime same issue that it is limited by the shape of the
target waveform, such as the trapezoidal oscillatory waveforms with flat regions. In
addition, to properly train the ANNSs for the state space equations, the training data needs
to be generated carefylto cover all the possible area of the state space, since incomplete
space coverage will result in the numerical solution of the differential equations deviating
from the correct solution or failing to converge, which makes the approach difficult to

use.



1.1.3 Modeling of I/O Drivers

The transfer of large amounts of data between different components in electronic
systems relies on higépeed links, where mixeslgnalinput/output [/O) drivers play a
critical role in generating high quality communication signai the channel. Pre
emphasis drivers are effective in driving signals though lossy transmission lines, and are
useful in reducing intersymbol interference (ISI). Signal and power integrity (SPI) and
timing analysis of digital systems in the design anghapation phase is becoming more
and more time consuming due to the increasing complexity of driver designs. Therefore,
being able to model premphasis drivers is important sngnalintegrity (SI) analysis of

digital systems.

There exist several technigs for modeling driverf24]-[33]. The most popular
approach is the I/O buffer information specification (IBIS) mofigé4] from the
electronics industry alliance (EIA)t Is a modeling technique that provides a simple
tablebased buffer model for semiconductor devices. IBIS models bearused to
characterize currentoltage (}V) output curves, rising/falling transition waveforms, and
package parasitic information of tlievice. IBIS models are based on D& curves
along with a set of voltageme (V-t) curves of the driver output voltage and packaging
parasitic information of the 1/O driver. However, the defined equivalent circuit in IBIS
model decides-gariori the phygcal effects taken into account, thus leaving limited ability
to capture advanced features of modern I/O drivers. Moreover, thisbiadae format
has limitations in representing characteristics with multivariate dependergy port

voltages, control arameters, etc.)IBIS models can also be challenged in accurately



capturing the dynamic characteristics of drivers at high data rates, since the dynamic

characteristics of the driver become predominant when driver excitations become fast.

As alternative pproaches for behavioral modeling, parametric and enhanced
models have been proposgb], [36], providing improved accuracy and variation of
features for modeling 1/O drivers of complementary mekadle semiconductor (CMOS)
technology. These parametric models suggest aptece structure, where two sub
models are used to capture th& Ibehavior of the pulup and puHdown devices
respectively, and are multiplied by weighting coefficients whichles the transient
contributions of t he upper and | ower de\
coefficients, either in table format or represented using weighting functions, are
generated corresponding to the bit sequence at the input of the drivegrdaching the
timing information of the transition events. However, these models are only applied to

drivers without preemphasis.

Based on the above approaf3v]-[39] extend the modeling methdd model pre
emphasis drivers. In these models, the samepiete model structure are used, and the
preemphasis behavior is captured using weighting signals that have the proper shape
incorporating the multiple level states, i.e., normal high, normal kirong high and
strong low. These implementations assume state transitions are spaced sufficiently in
time so that every new state transition only appears after the I/O driver has reached its
steady state. However, these models do not address the myoafetireemphasis drivers
when the bit duration is shorter than the -prephasis duratignwhere the above

assumption is not satisfied.



In [40], a physicsdbased approach is adopted to construct a-tadded empirical
model fa the simulation of digital drivers subject to overclocking conditions, where the
identified nonlinear dynamic model operators of the input port replace the concatenated
fixed stepinput describing functions of the tadbb@sed IBIS model and of other
paranetric approaches. However, this modeling approach does not capture the pre
emphasis characteristics of the driver, and the signals on certain internal nodes of the
transistorlevel devices are revealed and manipulated, thereby leaving thisogxay
model infeasible and exposing IP. Moreover, it cannot be applies to tunable drivers with
control parameters, since the identified nonlinear dynamic model operators are not

suitable for parameterization.

1.2 Summary of Contributions

The objective othis dissertations to develop timelomain behavioral models for
drivers and oscillatorgo enablefast simulation and IP protectiorzor oscillators,
augmented neural networks (AugNNs) are proposed to capture the oscillatory behavior of
fixed-frequency oscillators and M@s. For drivers, parametric modeling approaches are
used, and the dynamic memory characteri sti
using recurrent neural networks (RNN3he proposed models are compatible with

Verilog-A. In summary, the contributhns of the dissertation are listed akofes:

1. Steadystate oscillator modelingrhis work proposes timdomain steadytate
behavioral models of fixettequency oscillators and voltagentrolled

oscillators, which are not limited to the shapes of thgetawaveforms.



2. Modeling of oscillatorgncluding 1/0 behaviarWith output buffer being part of
an oscillator circuit, the behavior of the buffer needs to be incorporated into the
modeling of the entire oscillator design. This work proposes the moddiing o
oscillators with output buffers.

3. Modeling oftunabledrivers with pre-emphasis Sl analysisis importantin the
design of ICsSimilarly, power integrity (PI) analysis is critical considering that
simultaneous switching noiseéS$N can have significantnfluence on the
performance of circuits. Thereforen aaccuratemodel for drivers with pre
emphasis that can be used for both SI and PI analysis is né&addte other
hand, n some of the modern driver designs, advanced features emerge such as
tunable chracteristis with control parameters. The driver model developed
would be of little use unless the tunable charactesistice captured. The
modeling of tunable drivers with pemphasisfor SI and Plco-simulation is
addressed ithiswork.

4. Driver modelng for overclocking analysisWhen data rate becomes higher and
higher, overclocking willoccur when I/O drivers do not have enough time to
reach steady state before the next transitiime existing approaches cannot
accurately capture the overclockinghbgior of the I/O drivers.This work

proposesn accuraterier modelingmethodfor overclocking analysis

1.3 Organization of the Dissertation

The rest of thisdissertation isorganized as follows: Chapter @scribes the
proposedAugNNs for the modeling obscillators with constant frequencymulti-phase

oscillatorsand VCOs Also in this chapter, AugNNased models are presented for the



modeling of oscillators with output buffers. In Chapteb&havioral modeling of tunable
I/O driver circuits with preenphasis for SPI analysis is investigated, whbeeinfluence
of the control parameters taken into account. A modelingethodolgy for 1/O drivers
under overclocking conditions is demonstrated in ChaptEinélly, Chaptel5 presers

summary of this wde and discussionf somerelatedfuture work.



CHAPTER 2. STEADY-STATE MODELING OF OS CILLATORS

2.1 Introduction

The design process d€s relies on simulations usinEDA tools. Performing
these simulations for timing analysis, however, is becoming challenging in oértins
CPU time required. This is amplified for transistevel simulations in the design and
optimization phase due to increasing complexity of IC designs. The entire circuit
simulation can be sometimes dominated by certain circuit blocks like osesillakach is
a key component in analog orgdal PLLs. Behavioral modeling techniques play an
important role in reducing this complexity as they require less computing resources and
still provide accurate numerical results without disclosing any internauitly

information.

In [21] and[23], behavioral modal aredeveloped for oscillatsrusing artificial
neural networks based on state space representation. The output of the oscillator and its
time derivatives represent the state of the system. Thediinmain behavior is embodied
by an implicit formulation of the system differential equations which are solved using a
circuit simulator. This state space approach, however, has its limitationshdapge o the
oscillatory waveform is critical for the success of the state space nkaglete 2 shows
an example of a trapezoidal oscillatory waveform. In the plateau region, the oscillator
output stays invariant and all the derivates go t o zer o. At a r es
trigger the transition of theystemusing thestatespace approactn thischapter a novel
technique is presented for the thdemain behavi@a modeling of oscillators using
AugNNs. In the proposed metldpa feeeforward neural networkFFNN) with a periodic
unit is developedased on the mathematical formulation of oscillator behawibere the

periodic unit cancapturethe periodicity of the oscillatory output wavefarmand he

1C



neural network is abletlearn the waveform shape propeflyme step values are used as
an input to the neural network to learn the phase information of the oscillation. The
resulting model is a black box that hides the details of a transistor circuit and thus

protects IP.

2.2 Modeling of Oscillator with Constant Frequency

2.2.1 Mathematical Model

The output waveform of an oscillataiith constant frequency in the tint®main

can be expressed pHl]:

® 00 Q oh Q)

where Kosc is related to the oscillation frequeny, aR@) is a periodic function that
captures the shape of the waveformEfuationl, the argument ofF(), 0 _ 'Q pis the
total phase. The phase accumulates ratteé 0of Kosg and is mapped to the output using

F(), which is periodic.

To derive a behaoral model, we reformulate Equatidhin the discretdime

domain as:

@ & O Q36Q h )

wheren is the time index in the discretene domain.

2.2.2 Augmented Neural Network for Oscillators

11



In behavioral modelingANNs are shown to be capable of capturing the
nonlinearities accurately16]-[18]. ANNs provide mappings which can approximate
inputoutput nonlinear functions. Since the oscillator is a-poe system, it has no input
signal. However, it can be seen frétquationl that the output of the oscillator dejpisn
on the total phase which is a function of time &epTherefore, time is an important
input for modeling oscillators. Since the phase and time are related and the phase can be
arbitrary, most neural networks have difficulty in capturing the relshipnbetween
phase information and output waveforms for oscillators. To capture the periodic
dependence of the nonlinear behavior of the oscillator for an unbounded total phase, an

AugNN is proposed as shown kigure3.

12



Output layer

Hidden layers

Periodic unit
fa M

A

(P Input layer

dt(n)

Time step

Figure 37 Proposed augmented neural networkor oscillators.

In the proposed neural network, a periodic unit is introduced and cascaded
between the input layer and the first hidden layemdf@NN. The input for the network
consists ofa chronologicallyordered sequence of time stegtswhich is fed into the
periodic unit. Inside the periodic unit, the integraldbfis multiplied by the frequency
parameterK, after which the modulus operation is performed. The responses of the

periodicunit can be computed as:

W ¢ O QJQ ¢ @h (3
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By doing so, the unbounded total phase is mapped to the folded and normalized phase
within a range of [01). The output of the periodic unitp, is fed into the first hidden
layer. The values of the nodes in the hidden and output layers are calculateé&igsirg

3as

¢

w €& 0W& w €0 @ h 4

whered d@w Q Q ¥Q Q , is thejth neuron in the current hidden
layer,cd0 is thelth neuron of the preceding layer containing neuronsp " is the

weight between them ardl is the bia value of the current neuron. Furthermore,

w ¢ w ¢£0 @ h ©)

wherew is the neuron in the output layér, is the weight form thé&h neuron of the

precedent layer anél is the bias value of the output neuron, respectively.
2.2.3 Neural Network Training

Let the parameters of the augmented neural network be denoted as
"I "HO , wherew is the vector of weightd) is the vector of biases for the neurois,
is the frequency parameter of the periodic unit, @rdknotes transpose. When a set of
training data is fed into the input layer, the output, € , is compared with the desired

output,w £ , to calculate the training error. The parameters are estimated to minimize

the difference between the network outgut ¢ and the transisteevel circuit data

14



@ ¢ .LetN;be the number of time samples in the training datd$et.objective for

training theAugNN model is given by:
- 2R " "
I E-cl- w & w & 8 (6)

In order to employ efficient gradiebised training algorithms, derivatives of the
network ouput with respect to each parametertinare required to form the Jacobian
matrix J. A training scheme based on back propagation (BP) is used to calculate the

derivatives for each layer.

1_
©
£
><0.5'
Il
>
0 >
1 2 3 4 5

X

Figure 47 Mod function: « eO - M

However, there are points of discontinuity in the output of mod function in the
periodic unit. As shown ifrigure4, the functiony  @a € 'Q, is discontinuous when x
has integer values. But it is important to note thatdRrivative on the left side of the
discontinuity is equal to that on the right side, which is 1 here. The same value can be
assigned to the derivatives of the mod function at the discontinuous points to complete

the Jacobian matrix for the periodic umiyich can be formulated as:

15
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Based on this gradient scheme, gradieaded training algorithms such as the
LevenbergMarquardt method can be used to train the augmented neural network model.

Once the model is trained, it can be implemented in VeAlog
2.2.4 Modeling Examples
To quantify the accuracy of the behavioral model, a figure of merit (FOM) is

defined as:

B wi Q0w 'OTY"‘@’H

i (8)

00 0 pmap

where® i Q &ndw O 7Y Yare the simulation output voltage data of the translistae
model and the behavioral model,ws the reference outpubitage range, andll is the
number of data poin{gl2].

Test case 1In order to demonstrate the accuracy of the propssggNN model,
test cases are generated using transist@l inverter ring ecillator models provided in
[43]. The generic schematic is shownHRigure 5. The training data is generated using

Spectrd43].
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Figure 57 Schematic of a typical inverter iing oscillator.

In the first test case, a 0.1689 GHz inverter ring oscillator was designed. The
transistorlevel simulation data is used to train tAagNN with random initializations.
The one time training process costs 2~3 rirkigure 6, the output waveform achieved
using the behavioral model with a hidden layer consisting of 10 neurons is compared to
the transistotevel model output. It can be seen that the behavioral model is accurate and
matches well with the actual inverteng oscillator voltage wavefornand a FOM value
of 99.85 is achievedrigure 7 shows the training results of the frequency parameter
which converges to 0689x1.0° after several training iterationghe behavioral model
achieves 40X speeeup in simulation time compared to the transidémel Spice

oscillator circuit.
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Figure 6 T Test case 1 output waveforms for transistotevel oscillator model
(straight line) and behavioral model (dotted line).
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Figure 71 Plot of the frequency parameterK during the training process
Test case 2: In this test casebehavioral model of a 0.5743 GHz inverter ring
oscillator is generated. The network model has a hidden layer of 10 nessiswn in
Figure 8, the output waveform of the behavioral model matches accurately with the

transistorlevel circuit outputand a FOM value of 99.90 is achieved
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Figure 8 T Test case 2 output waveformsfor transistor-level oscillator model
(straight line) and behavioral model (dotted line)

Test case :3In this test case, a modeling example of mpittase oscillator is
demonstrated. Aguadrature ring oscillator as shown kigure 9 is used for model
validation[44], [45]. The oscillator is free running with a constant frequency and has four
outputs. There is a phase shift of 90° between each successive &aped. onthe
proposed modeling methodologyor multi-output oscillators,an AugNN model is
developed as shown Figure10. Since theoutputs of the oscillator are highly correlated
to each other with respect to the oscillation frequeaoyAugNN architecturewith the

sameperiodic unitsharedoy the network outputs necessary.
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Figure 97 Schematic of a quadrature oscillator
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Figure 107 AugNN model for the quadrature oscillator.

The network model has a hidden layer consisting of 15 neurons, and 4 output
neurons corresponding to the quadrature outputs of the oscillator. The training data is
generated from transisttgvel simulation usig Spectre The network parameters are
initialized randomly. A training mean squared error (MSE) of 6-85EK achieved after
several iterations, and the frequency parameter converges to 3.2249 GHz. After training,
the model is implemented in Veriled, and simulated using SpectrEigure 11 shows

the output waveforms of the transistevel model and the behavioral model, where a

20



good match can be observed with an MSE of 6:64Bnd a FOM value of 882 is

achieved

14
Reference VIB ————— Reference V Q ~ - Reference VQD

Reference VI ...........
o Behavioral VI o Behavioral VIB Behavioral VQ o Behavioral VQB i

Voltage (V)

Time (s) %107

Figure 1117 Output waveforms for the transistor-level model and the behavioral
model of the quadrature oscillator.

2.3 Modeling of Oscillator Including 1/0 behavior

In ICs, buffers are widely used as the interface between the internal circuit core
and the load at the output. Since the buffers are unidirectional, the voltage and current at
the output port have little influence on the internal activity. In oscillator designs, output
buffers can be employed to minimize loading of the oscillator codeggenerate high

guality signals with enhanced drive strendtigure 12 shows a scenario where a buffer

is included in the oscillator design.
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Figure 1271 Oscillator circuit in cluding output buffer.

The model illustrated above, however, does not take into account output buffer
behavior and the associated load variatidite nodel needs to be extendéd address
the modeling of oscillators with output buffers.this sectionan AugNN-basedmodelis
discussedwhere the nonlinear dynamic behavior of the output buffer is taken into
account usindiRNNs, and an AugNN with multiple output units is used to capture the

oscillatory weighting functions controlling the transitions of bioéfer.

2.3.1 Buffer Modeling

For a buffer circuit, the current at the output port can be expres§es] 487]:

QO O 0O 0 0Qoh 9)

where’Q 6 and’Q 6 are nonlinear dynamic submodelscountingor the output current
of the last stage of the buffer when the buffer input,is at the high (H) and low (L)

voltage state respectively, ad 0 and0 0 are the weighting functions that help the

22



transitions between the two saiodels. InEquation9, submodel function;Q 6, can be

defined using parametric relations as:

MO QU ohRAh & "ODh (10)

whered 0 is the output voltage, anblrepresents the dependence of-sutwlel current

on the previous values of the sign&andu .
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Dynamic behavior — Transistor-level
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Time (s) %1079

Figure 1371 Buffer output current for input HIGH from transistor -level model (solid
line) and from RNN model (dotted line)

For anonlinearbuffer circuit, when the buffer operation is fast, the dynamic
characteristics of the buffer become predominant, as showrigure 13 where a
piecewiselinear voltage source is connected at the buffer output port and the buffer input
is set high. In such cases, sulodels need to be capable of capturing the nonlinearity
associated with the dynamic response of the driver. RWNigh include feedback paths
allowing for taking into account the previous samples, are shown to be capable of

modeling nonlinear dynamic circuit$9], [37]. To efficiently capture the memory eftec
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and the nonlinear dynamic behavior of the buffer, the previous time instances of the
buffer output voltage and current are considered and thensdels can be learnt as

RNN models:

O Ol o6 QB o ‘l"QF]

Qo Q6 QBHQL 1Q

(11
T (hh
wherel is the output voltagéQis the sampling time step, ahds referred to as the
dynamic order of the model, which usually has a value of 1 or 2 for typical b[Btgrs
It can be seen frorRigure 13 that with the inclusiorof two previous time instances, the

output current values learnt by the RNN snbdel match accurately with the transistor

level simulation results.

For the weighting functions) o and0v 0, the modelsin [35] and [37]
assume time concatenation of the successive transients triggered by the different input
state transitions. This approach, however, does not apply to oscillators since they do not
have any input signalfOn the other &nd, the approach of directly connecting the
oscillator model to the buffer model may not work well, when the oscillation frequency is
high where there is not enough time for the buffer to reach steady state before each
transition. Therefore, adifferent method of extracting and modeling the weighting

functions is required.

2.3.2 AugNNbased Model
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Based on the above discussion, an Aughided model is proposed for
oscillators with buffers, as shown kigure 14, where the periodicity ofhe oscillatory
weighting functions is captured using an AugNN with multiple output units and the
nonlinear dynamic behavior of the output stage is captured using RNMaidis. The
input for the AugNN consists of a chronologicatiydered sequence of tinséeps which
is mapped to the folded and normalized phase within a rangépofby the periodic unit
[22]. At the output layer, the AugNN generates the weighting coefficients) and
0 0,whichscalethetrasi ent contributions of-mdadéle uppeEe
current sources) 0 and’Q 0, at the buffer output port. It is important to note that
the use of one AugNN with multiple output units is necessary to ensure the tw

weighting functions oscillate at the same frequency by sharing the same periodic unit.

|
I
I
dt(n) Udt mod 1

Time step

Periodic unit

—_———

Figure 141 Proposed AugNNbased model for oscillatorancluding output buffers.

The training of the proposed maldconsists of two parts:

1) RNN submodels:The training of the RNN sulnodels can be carried out by
connecting a multilevel piecewidmear voltage source at the buffer output port to
generate the excitation identification signals as shownguare 13, with the buffer input,

0 , fixed at HIGH and LOW respective[85], [37]. Once the data is collected, RNNs in

(12) are trainedaccordingly to learn the subodels.
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2) AugNN: After the submodels are obtained, the oscillatoryeighting
coefficients need to be extracted for AugNN training. This can be done by running the
oscillator with the buffer output port connected to two déferloadsd and®, e.g., a
500 r esi st @ and the serie$ aprandction ofva voltage source and a &
resistor for loadd . The weighting coefficients can be extracted using the method of
matrix inversion[35], [37]. Once the weighting functions are extracted, the AugNN can
be trained using the gradielased training algorithms if22] modified for multiple

output neurons. After the training, thehavioral model is implemented in Veritdg

2.3.3 Modeling Example

Vud ©

E Rk _R|l_B _F

B LE K F |k Output
alil

Figure 157 Ring oscillator circuit including an output buffer.
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Figure 16 i1 Weighting functions extracted (sold line) and learnt by the AugNN
(dotted line).

To demonstrate the accuracy and efficiency of the proposed model, a modeling
example is generated using a transig@el ring oscillator circuit including an output
buffer as shown inFigure 15. The transistotevel simulation data generated using
Spectre is used to train the model. The RNNs formaoldels contain 10 neurons in the
hidden layer. Based on the method described in the previous section, the weighting
coefficients are exaéicted as shown ifrigure 16. A training rootmeansquared error
(RMSE) of 0.0034 is achieved using an AugNN with a hidden layer consisting of 15
neurons. The oscillation frequency is learnt by the AugNN as the parametarthe

periodic unit, which is 1.9481 GHz. The RNNs and AugNN are then implemented as a

Verilog-A model.
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Figure 171 Test setyp for model validation.
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Figure 181 Output voltage wavdorm from transistor -level model (solid line) and
from behavioral model (dotted line)

To test the performance of the trained model, the oscillator circuit is connected to
a | oad resistor of 75 q and a Fgaglaandt or
simulated in Spectre. It can be seen frBrgure 18 that the simulation results of the
behavioral model match well with the transisievel model. A FOM value of 98.047 is
achieved inFigure 18, and the behavioral model achieves a reduction in simulation time

of up to 96%.
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2.4 Modeling of VCOs
2.4.1 Mathematical Model

The steadystate tine-domain output waveforms of a VC®ith multiple output

ports can be expressed as:

~

W O oM 5 o O 1 oQoh 12

wherg 0 is the instantaneous frequendy, is the number of outputs, afd is a
periodic function that captures the phaof the waveforms. Specifically, for an oscillator
with fixed frequency, 0 is a constant, whereas, for a VGO0 is a function of the
frequency control voltage, i.d., 0 "Ou 0 [41]. In Equation 12, the function
argument, 7 0 Q0is the total oscillation phase, which accumulates at a rate @f

The phase is mapped to the output throi@h a periodic function with respect to phase.

To derive a behavioral model, we reforaua Equation12 in the discretdime

domain as:

w fEtho e 5 & O ] QFQh 13

whereg is the time index in the discretiene domain

2.4.2 Augmented Neural Network fdCOs
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From Equation13, we can see that the output of a V@&QCa function of the total
oscillation phase, which can be obtained by integrating the product of the instantaneous
frequency and the timestep dt. Therefore, time is an inherent input for modeling
oscillators. However, the total oscillation phase is unbounded, since the phase can be
arbitrarily large along with the increase of time. As a result, most neural networks will
fail to capture thehaseoutput relation of oscillators, since the unbounded input values
cannot be properly handled. Moreover, for oscillators with multiple ports, the outputs are
highly correlatedwith each other in terms of phase. This correlation must be strictly
retaired in the behavioral model to avoid any mismatch in their instantaneous
frequencies. To overcome these difficulties, a madtiput AUgNN is proposed as shown
in Figure 19, where a periodic unit is introduced. In the following di&sion,it can be
seen that,given the model formulations for VCOs, the model for fixieelquency

oscillators is a subset with the frequencyd being constant.

Main FFNN
Periodic Unit . " )
-~ ~ Hidden layers ~ Output layer
dt(n) —>O——>§)—> Usdt
Time step l y Yout,1
¥ mod 1 -+
yout,2
Second .
FFNN . . *
N Y, S\ Yourny

() —O—— ;

Control voltage

Figure 1917 Proposed AugNN model for VCOs
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The input for the proposed AugNN consists of the chronologicatiered
sequence of time step$ and the control signal which are fedo the periodic unit. The
function of the periodic unit is to learn the instantaneous frequency and generate bounded
oscillation phaseSince the frequency ia function of the control voltageithout time

dependencyhis can bedone by first capturing using a FFNN as:

1 & "Q 0 € h (14

whereQ represents the formulation of the FFNN inside the periodic unit. Then the
product of the instantaneous frequencgnd the time stegt is integrated to obtain the

total oscillation phase, after which the modulus operation is performed to map the
unbounded total oscillation phase to the folded phase that is normalized within a range of

Thp . The responses of the periodic unit can m@puted as:

@ & 1 "0Q8Q 6 ¢ @8 (15)

The output of the periodic unk._, and the control signabs, are used as the input of the
main FFNN. For an AugNN with multiple outputs, (et be the totanumber of the
output neurons, an@d & be thekth output signal at theth time sample. The values

of the nodes in the output layer of the main FFNN are calculated ligjnge 19 as:

~ ~
’

W Rl FEMR 5 & Q wil & R (16)
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where™Q represents the formulation of the main FFNN. For the main and second
FFNNs, the hyperbolic tangent functidd ATGE Q Q T7Q 'Q ,is used as

the activation function for the hidden neurons.
2.4.3 Aug\N Training

The training of the network is the process of tuning the network parameters to
minimize the difference between the transidéwel circuit datac, , § and the network
outpute, , & , which is defined as the squared efere For training the multoutput

AugNN, the objective function is given by:

W € W RE N (17)

m\
N+D

whereb i s the number of time samples in the
the training data fed into the network must be in the chronological order to make sure the

phase intgration is calculated correctly. Let the parameters of the AugNN be denoted as

, Te "M lgy "My, where'l g and’Ht are the vectors of the weights and
biases of the main FFNNI,erﬁand"hEﬁare the vectors of the weights and biases of the
second FFNN inside the periodic unit, ahdlenotes transpose. Gradidratsed training
algorithms can be used to optimized the network parameters, where the Jacobiad matrix
is computed using thBP methal to calculate the derivatives of the network outputs with
respect to each parameter in The derivatives of the FFNNs can be computed by

normal BP[16].
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Figure 201 Recurrent node representation of the integral node in the periodic unit.

Particularly, the itegral operation in the periodic unit can be represented
equivalently using a recurrent node with a fixed recurrent weight qf asehown in
Figure20. Based on this representation, the integral output, is iterativdy computed

as:

& O & p ] Q&S (18)

However, there are discontinuity points brought by the modulasatpnw wd € Q

in the periodic unit, wherg has integer values. In order to os@me this discontinuity
difficulty, the value of one can be used as the derivatives ofnibéfunction at the
discontinuous points, which is equal to the derivatives on both the left and the right sides

of the discontinuity. The derivatives for the pertodnit can be formulated as:

W £ W £ a .
! h T heTT h (19
) ER T1a T ENR
where -gj " -y My is the vector of the parameters of the periodic bnjt,a 7

T - can be computed for the second FFNN using BP method, and
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wherd @ f &€ I & € can be computed for the main FFNN using BP method. After

this procedure, the Jacobian matrix of ktfreoutput can be formulated as:

E 11
3 oule T T e Tk (21)
mw P TWw G - T U ,
E
urt g T Eq T g U
where ¢ “lg "H is the vector of parameters of the m&RNN. The entire
Jacobian matrix is then given by:
J J J E 8 (22

Using this gradient scheme, the gradieased training algorithms, the Levenberg
Marquardt method, can be appliedttain the AugNN model, and the corresponding step

for updating the network parameters in each training iteration can be calculpté{l as

JJ ‘& J1h ¢ mh (23

wherel is theidentity matrix,’ is the damping parameter, and

N N N E N § (24)
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After training, the AugNN model can be implemented as a VeAlmgodel.

2.4.4 VCO Modeling Example

(29

To demonstrate the accuracy of tAeigNN model, a modeling example is

generated using a transistervel VCO circuit model that has the lowest frequency of

0.216 GHz and the highest frequency of 0.306 GHz with the control valtageging

from 1 V to 3 V.Its simplified schematic is shown gure2l.

CURRENT

] —

Control voltage MIRROR

i

veo_ouT —<—

"

e
T T

Figure 2171 Simplified schematic of the target VCO
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As can be seen that the VCO circuit has single output port. Therefore, the
proposed AugNN can be simplified with single output unislaswn inFigure 22. The
training daa is generated using Spectre withvarying from 3 V to 1 V in steps 6.2
V as shown irFigure23. When the roetneansquared error is expressed as a percentage
of the peakto-peak amplitude, a training RMSEfpof 0.61% isachieved using an
AugNN containng 20 neurons in the first and 10 neurons in the second hidden layer of
the origianl FFNN, and 5 neurons in the single hidden layer of the second FFENN in the

periodic unit.The one time training process costs around 5 min.

Output layer

Hidden layers

4 Yy )

Second FFNN | mod 1 Jo(t)dt

Periodic unit

. v

(\) Input layer

v_(n) dt(n)

Control voltage Time step

Figure 227 AugNN with single output unit for VCO modeling.
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Figure 2371 Training waveforms of control voltage (thick solid blue line), and the
output of transistor-level (thin red line) and behavioral model (dotted line).

Figure 2471 Test waveforms of control voltage (thick solid blue line), and the output
of transistor-level (thin red line) and behavioral model (dotted line).

To test the performance of the trained model, a frequency sweep is applied by
contiruously changing between its maximum and minimum as showrFigure 24.

Good agreement between the output of the behavioral and trafeistbmodel can be
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