
BEHAVIORAL MODELING OF DRIVERS AND OSCIL LATORS

USING MACHINE LEARNI NG

A Dissertation

Presented to

The Academic Faculty

by

Huan Yu

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2019

COPYRIGHT © 2019 BY HUAN YU

BEHAVIORAL MODELING OF DRIVERS AND OSCIL LATORS

USING MACHINE LEARNI NG

Approved by:

Dr. Madhavan Swaminathan, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Saibal Mukhopadhyay

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Sung-Kyu Lim

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Suresh K. Sitaraman

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Arijit Raychowdhury

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Date Approved: October 3, 2019

To my family and friends

iv

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support of the people

who have helped and inspired me during my Ph.D. life at Georgia Tech. I would like to

thank all of them.

First, I would like to express my deepest gratitude to my advisor, Dr. Madhavan

Swaminathan. All these accomplishments could not be possible without his valuable

advice, insightful guidance and support. He is an outstanding scientist, mentor and leader.

What I have learnt from him will be my lifetime treasure. I would also like to extend my

gratitude to the committee members, Dr. Sung-Kyu Lim, Dr. Arijit Raychowdhury, Dr.

Saibal Mukhopadhyay, and Dr. Suresh K. Sitaraman, for their time and effort in serving

on my committee.

I would like to give my special thanks to current and former members of the

research group, Ming Yi, Biancun Xie, David Zhang, Kyuhwan Han, Sung Joo Park,

Colin Pardue, Hakki Torun, Majid Ahadi, Nahid Aslani Amoli, Sridhar Sivapurapu,

Claudio Alvarez, Osama Waqar Bhatti, Venkatesh Avula, Kai Qi Huang, Serhat Erdogan,

Seunghyup Han, Mutee ur Rehman, Xiaofan Jia, Chirag Mehta, Xiaotong Jia, Anoop

Chidambar Kulkarni, Sebastian Muller, Anto K. Davis, Mohamed L.F Bellaredj, Mourad

Larbi and Kallol Roy, and visiting scholars, Xiaojia Huang, Felipe Treviso, Hemanth

Chalamalasetty, Sreenaesh Ramesh, Yongsheng Li, Wen-Sheng Zhao, Riccardo

Trinchero and Carmine Gianfanga for their help and support. My thanks also extend to all

the researchers and students I worked with, and all my friends.

 v

I would like to especially thank my family. Without the endless love, guidance

and support from my parents, I would not be here. They are always the source of my

strength and motivation.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS AND ABBREVIATIONS xiv

SUMMARY xvi

CHAPTER 1. Introduction 1
1.1 Background and Motivation 1

1.1.1 Behavioral Modeling and Neural Networks 1
1.1.2 Modeling of Oscillators 3

1.1.3 Modeling of I/O Drivers 5

1.2 Summary of Contributions 7
1.3 Organization of the Dissertation 8

CHAPTER 2. Steady-State Modeling of Oscillators 10

2.1 Introduction 10
2.2 Modeling of Oscillator with Constant Frequency 11

2.2.1 Mathematical Model 11

2.2.2 Augmented Neural Network for Oscillators 11

2.2.3 Neural Network Training 14

2.2.4 Modeling Examples 16

2.3 Modeling of Oscillator Including I/O behavior 21
2.3.1 Buffer Modeling 22
2.3.2 AugNN-based Model 24
2.3.3 Modeling Example 26

2.4 Modeling of VCOs 29
2.4.1 Mathematical Model 29
2.4.2 Augmented Neural Network for VCOs 29
2.4.3 AugNN Training 32
2.4.4 VCO Modeling Example 35

2.5 Modeling of VCO Including I/O behavior 38
2.5.1 AugNN-based Model 38
2.5.2 Modeling Process 40

2.5.3 Model Validation 42

2.6 Summary 48

CHAPTER 3. Behavioral Modeling of Tunable I/O Driver with Pre-emphasis 49
3.1 Introduction 49
3.2 Model Structure 51
3.3 Pre-emphasis Issue in Modeling 53

 vii

3.4 Modeling Method 56
3.4.1 Model Formulation with State-Aware Weighting Functions 56
3.4.2 Model Representations 58
3.4.3 Modeling Flow 62

3.4.4 Tunable Driver with Control Parameters 67

3.5 Modeling Examples 69
3.5.1 Pre-emphasis Driver with Power Supply Noise 69
3.5.2 Validation of State-Aware Weighting Functions with Pre-emphasis 73
3.5.3 Tunable Driver Modeling Test Cases 76

3.6 Summary 82

CHAPTER 4. Modeling of I/O Drivers under Overclocking Conditions 83
4.1 Introduction 83

4.2 Model Overview 84
4.3 Overclocking Issue 86

4.4 Transition-Variational Model 91
4.4.1 Model Formulation with TVWFs 91
4.4.2 Modeling Process 94

4.5 Modeling Examples 96
4.5.1 Test Case under Normal Condition 97
4.5.2 Test Case under Overclocking Condition 100

4.6 Summary 103

CHAPTER 5. Conclusion and Future Work 105
5.1 Contributions 106

5.2 Future Work 109
5.3 Publications 112

APPENDIX A. OSCILLATOR MODEL IMPLEMENTATION 116

APPENDIX B. OVERCLOCKED DRIVER MODEL IMPLEMENTATION 119

REFERENCES 124

 viii

LIST OF TABLES

Table 1 ï Functions and value options of the driver control parameters. 67

Table 2 ï Comparison of the eye diagram apertures of the behavioral models

(reference: transistor-level model).

76

Table 3 ï Comparison of the eye diagram apertures of the proposed

behavioral model for tunable pre-emphasis driver in different test

cases (reference: transistor-level model).

82

Table 4 ï Eye diagram performance and efficiency evaluation for normal

condition test case (reference: transistor-level model).

100

Table 5 ï Eye diagram performance and efficiency evaluation for

overclocking condition test case (reference: transistor-level model).

103

Table 6 ï Model implementation in Verilog-A. 119

 ix

LIST OF FIGU RES

Figure 1 ï Behavioral modeling for time-domain analysis. 2

Figure 2 ï Trapezoidal output waveform of an oscillator. 4

Figure 3 ï Proposed augmented neural network for oscillators. 13

Figure 4 ï Mod function: ◐ ● □▫▀ . 15

Figure 5 ï Schematic of a typical inverter ring oscillator. 17

Figure 6 ï Test case 1 output waveforms for transistor-level oscillator model

(straight line) and behavioral model (dotted line).

18

Figure 7 ï Plot of the frequency parameter K during the training process. 18

Figure 8 ï Test case 2 output waveforms for transistor-level oscillator model

(straight line) and behavioral model (dotted line).

19

Figure 9 ï Schematic of a quadrature oscillator. 20

Figure 10 ï AugNN model for the quadrature oscillator. 20

Figure 11 ï Output waveforms for the transistor-level model and the

behavioral model of the quadrature oscillator.

21

Figure 12 ï Oscillator circuit including output buffer. 22

Figure 13 ï Buffer output current for input HIGH from transistor-level model

(solid line) and from RNN model (dotted line).

23

Figure 14 ï Proposed AugNN-based model for oscillators including output

buffers.

25

Figure 15 ï Ring oscillator circuit including an output buffer. 26

Figure 16 ï Weighting functions extracted (solid line) and learnt by the

AugNN (dotted line).

27

Figure 17 ï Test setup for model validation. 28

Figure 18 ï Output voltage waveform from transistor-level model (solid line)

and from behavioral model (dotted line).

28

Figure 19 ï Proposed AugNN model for VCOs. 30

 x

Figure 20 ï Recurrent node representation of the integral node in the periodic

unit.

33

Figure 21 ï Simplified schematic of the target VCO. 35

Figure 22 ï AugNN with single output unit for VCO modeling. 36

Figure 23 ï Training waveforms of control voltage (thick solid blue line), and

the output of transistor-level (thin red line) and behavioral model

(dotted line).

37

Figure 24 ï Test waveforms of control voltage (thick solid blue line), and the

output of transistor-level (thin red line) and behavioral model

(dotted line).

37

Figure 25 ï VCO circuit including output buffer. 38

Figure 26 ï Proposed AugNN-based model for VCOs including output

buffers.

39

Figure 27 ï Test-benches used for the collection of training data required for

model generation. (a) Transient analysis for the extraction of

nonlinear dynamic sub-models. (b) Transient analysis for the

extraction of weighting functions using step control voltage signal.

42

Figure 28 ï Simplified schematic of the VCO circuit including output buffer. 43

Figure 29 ï (a) Training waveform of control voltage. (b) Weighting function

w_H extracted and learnt using AugNN. (c) Weighting function

w_L extracted and learnt using AugNN.

44

Figure 30 ï Tuning curve of the VCO obtained from the transistor-level

model and the behavioral model.

45

Figure 31 ï Model validation setup. 46

Figure 32 ï (a) Control voltage waveform used in the test case. (b) Output

waveforms of the transistor-level simulation and the behavioral

model simulation.

47

Figure 33 ï Generic driver electrical structure. 51

Figure 34 ï Example output voltage waveform of a pre-emphasis driver. 54

Figure 35 ï Example weighting function ◌▫ȟ ◄ for a pre-emphasis driver

with possible down transitions (dashed lines) of different timings.

54

Figure 36 ï Concatenation of steady-state switching timing signals for pre- 55

 xi

emphasis when the switched input logic states are shorter than the

pre-emphasis duration.

Figure 37 ï FSM graph for the proposed modeling method with state-aware

weighting functions.

57

Figure 38 ï RNN structure. 59

Figure 39 ï (a) Piecewise-linear voltage waveform connected at the driver

output. (b) Output current from a transistor-level model (solid line)

and from RNN model (dashed line) for input high.

61

Figure 40 ï FFNN structure. 62

Figure 41 ï Test-benches used for the collection of driver responses required

for the model generation. (a) Transient analysis for the extraction of

nonlinear dynamic sub-models. (b) Transient analysis for the

extraction of state-aware weighting functions using input

transitions with different intervals.

64

Figure 42 ï Example input waveforms with different intervals for the

extraction of weighting functions for high-to-low transitions

(dashed red down transition curves) with pre-emphasis effect.

66

Figure 43 ï Tunable driver with control parameters. 67

Figure 44 ï (a) Output waveforms of down transitions for different Ron.pd

and EQ settings, with Ron.pu = 34. (b) Output waveforms of up

transitions for different Ron.pu, EQ and VOH settings, with Ron.pd

= 34.

68

Figure 45 ï Extracted output port weighting function ◌▫ȟ with pre-emphasis

for HIGH-to-LOW transitions.

70

Figure 46 ï Simulation setup for model validation. 71

Figure 47 ï Voltage waveform at the power supply port from the transistor-

level model and from the behavioral model.

72

Figure 48 ï Eye diagram at the far-end of the transmission line. Power supply

variation is considered for the weighting functions of the behavioral

model.

72

Figure 49 ï Eye diagram at the far-end of the transmission line. Power supply

variation is not considered for the weighting functions of the

behavioral model.

73

 xii

Figure 50 ï Simulation waveforms with and without state-aware weighting

functions.

74

Figure 51 ï Eye diagram at the near-end of the transmission line. 75

Figure 52 ï Simulation setup under channel reflection and crosstalk scenarios. 77

Figure 53 ï Voltage waveforms at (a) power supply port and (b) channel port

2B, in test case 1.

78

Figure 54 ï Voltage waveforms at (a) supply port and (b) channel port 2B, in

test case 2.

79

Figure 55 ï Voltage waveforms at (a) supply port and (b) channel port 2B, in

test case 3.

80

Figure 56 ï Behavioral model structure for I/O drivers. 86

Figure 57 ï Example driver output waveform under overclocking conditions. 87

Figure 58 ï Generation of weighting coefficients based on the concatenation

scheme.

88

Figure 59 ï Transitions of the weighting function under overclocking

conditions.

88

Figure 60 ï (a) Input patterns with different transition separations. (b)

Extracted weighting function ◌ .

90

Figure 61 ï FSM graph for the proposed modeling method using TVWFs. 94

Figure 62 ï Transient analysis setup used for the collection of data required

for the extraction of weighting functions.

96

Figure 63 ï Simulation setup for model validation using transmission line. 97

Figure 64 ï Simulated voltage waveforms from the transistor-level model and

the proposed model at the near-end of the transmission line.

98

Figure 65 ï Eye diagrams from the transistor-level model and the proposed

model at the near-end of the transmission line.

99

Figure 66 ï Simulated voltage waveforms at the far-end of the transmission

line from the transistor-level model, the proposed model (TVWFs)

and the non-TVWFs behavioral model.

101

Figure 67 ï Eye diagrams at the far-end of the transmission line from the

transistor-level model and the proposed model (TVWFs).

102

 xiii

Figure 68 ï Eye diagrams at the far-end of the transmission line from the

transistor-level model and the non-TVWFs behavioral model.

102

Figure 69 ï Example transient waveform of an oscillator. 110

Figure 70 ï Multi -level encoding and eye diagram in PAM-4 signaling. 111

 xiv

LIST OF SYMBOLS AND ABBREVIATIONS

IC Integrated Circuit

EDA Electronic Design Automation

IP Intellectual Property

ANN Artificial Neural Network

PLL Phase-Locked Loop

VCO Voltage-Controlled Oscillator

I/O Input/Output

ISI Intersymbol Interference

SPI Signal and Power Integrity

SI Signal Integrity

IBIS I/O Buffer Information Specification

EIA Electronics Industry Alliance

I-V Current-Voltage

V-t Voltage-Time

CMOS Complementary Metal Oxide Semiconductor

RNN Recurrent Neural Network

AugNN Augmented Neural Network

PI Power Integrity

SSN Simultaneous Switching Noise

PAM-4 Four-Level Pulse Amplitude Modulation

BP Back Propagation

MSE Mean Squared Error

 xv

RMSE Root-Mean-Squared Error

FOM Figure of Merit

FFNN Feed-Forward Neural Network

BPTT Back Propagation Through Time

PDN Power Delivery Network

FSM Finite State Machine

PRBS Pseudorandom Bit Sequence

TVWF Transition-Variational Weighting Function

NARX Nonlinear Autoregressive Network with Exogenous Inputs

NRZ Non-Return to Zero

 xvi

SUMMARY

The objective of this dissertation is to develop time-domain behavioral models for

I/O drivers and oscillators for fast simulation and IP protection. For oscillators,

augmented neural networks (AugNNs) are proposed to capture the oscillatory behavior of

fixed-frequency oscillators and VCOs. When output buffer is included as a part of the

oscillator circuit, AugNN-based models are developed taking into account the I/O

behavior of the oscillator. For tunable drivers with pre-emphasis, state-aware weighting

functions are proposed, and the dynamic memory characteristics of the driverôs output

stage are captured using recurrent neural networks (RNNs). The behavior of the tunable

control parameters is captured. Furthermore, a transition-variational model is discussed

for the modeling of I/O drivers under overclocking conditions. The proposed models are

compatible with Verilog-A.

 1

CHAPTER 1. INTRODUCTION

The design process of integrated circuits (ICs) relies on the use of electronic design

automation (EDA) tools which provide the capability of performing circuit simulations

for functional verification. However, as complexity of IC designs increases, performing

such analysis is becoming more and more challenging in terms of the CPU time required

for transistor-level simulations of the circuits. Behavioral modeling plays an important

role in the design process of ICs by reducing the CPU time for simulations. This black

box modeling approach, which is always advantageous for intellectual property (IP)

protection, is independent of the knowledge of the internal logic of the circuit

components, and thus doesnôt need to have the same complexity as the transistor-level

circuit models. Itôs worth mentioning that the behavioral model developed will be of little

use unless it is compatible with existing commercial circuit simulation environment (e.g.,

Spectre, HSPICE, etc.).

1.1 Background and Motivation

1.1.1 Behavioral Modeling and Neural Networks

The objective of behavioral modeling is to find suitable port relations similar to

the original complex circuit such that the behavioral model is able to minimize the error

compared to the response of the transistor-level model, as shown in Figure 1. At the same

time, the behavioral model should be compatible with the existing circuit simulators, and

should require less simulation time than the original circuit.

 2

Waveform

processing

Behavioral model

Black-box

Error

 ()y t

()y t
Transistor-level

circuit simulation

Figure 1 ï Behavioral modeling for time-domain analysis.

Recently, machine learning has been widely explored in various areas of

electronics such as modeling, optimization and inverse design [1]-[15]. Specifically, in

behavioral modeling, artificial neural networks (ANNs) are shown to be capable of

capturing the nonlinearities accurately [16]-[18]. Many techniques have been proposed in

the past to develop behavioral models for nonlinear circuits using ANNs [17]-[19]. The

advantages that ANNs provide include but are not limited to the following: Firstly, ANNs

are universal approximators [16], [18] with bounded and monotone-increasing continuous

nonlinear activation functions in the hidden neurons (in particular, the nonlinear function

cannot be a polynomial, since the superposition of polynomials is still a polynomial),

which ensures the effectiveness and flexibility for fitting the model components.

Secondly, there are several well developed techniques (testing during training,

regularization, etc.) devised for the training of ANNs to avoid overfitting the target

functions, which provides the generalization capability of ANNs for multivariate

modeling. Furthermore, compared to table-formatted models, ANNs, which can be

 3

readily implemented in Verilog-A [20] using the common built-in mathematical functions

and operators, are flexible to use and require less coefficients (just need network bias and

weight values). Based on the above observations, ANNs are selected as the model

architecture for the proposed work.

1.1.2 Modeling of Oscillators

In the design process of ICs, highly sophisticated transistor-level models are used.

The entire mixed-signal circuit simulation sometimes can be dominated by certain circuit

blocks like oscillators which is a key component in analog or digital phase-locked loops

(PLLs). Behavioral modeling of oscillators plays an important role by reducing the CPU

time for simulations.

In [21], a behavioral model is developed for a fixed-frequency oscillator using

ANNs based on state space representation. The output of the oscillator and its time

derivatives represent the state of the system. The time-domain behavior is embodied by

an implicit formulation of the system differential equations which are solved using a

circuit simulator. The formulation of the system differential equations represent the

relationship between the output signal of the oscillator, its lower-order time derivatives

and its higher-order time derivatives, which are learnt using ANNs. This state space

approach, however, has its limitations. The shape of the oscillatory waveform is critical

for the success of the state space model. Reference [22] shows an example of a

trapezoidal oscillatory waveform, where the oscillator output stays invariant and all the

derivatives go to zero in the plateau region as shown in Figure 2, and as a result, itôs

impossible for the model to trigger the transition of the system state.

 4

Figure 2 ï Trapezoidal output waveform of an oscillator.

Using a similar approach, in [23], a behavioral model is developed for a voltage-

controlled oscillator (VCO). The output of the VCO and its time derivatives are mapped

to the higher-order time derivatives using ANNs. The difference for VCO modeling is

that the system response is modified by a control voltage as well. Therefore, in the

formulation of the system differential equations, the control signal is included as an

additional input, and the ANNs need to be trained accordingly in order to capture the

influence of the control signal on the mapping relation. However, as discussed above, this

VCO modeling approach suffers from the same issue that it is limited by the shape of the

target waveform, such as the trapezoidal oscillatory waveforms with flat regions. In

addition, to properly train the ANNs for the state space equations, the training data needs

to be generated carefully to cover all the possible area of the state space, since incomplete

space coverage will result in the numerical solution of the differential equations deviating

from the correct solution or failing to converge, which makes the approach difficult to

use.

 5

1.1.3 Modeling of I/O Drivers

The transfer of large amounts of data between different components in electronic

systems relies on high-speed links, where mixed-signal input/output (I/O) drivers play a

critical role in generating high quality communication signals in the channel. Pre-

emphasis drivers are effective in driving signals though lossy transmission lines, and are

useful in reducing intersymbol interference (ISI). Signal and power integrity (SPI) and

timing analysis of digital systems in the design and optimization phase is becoming more

and more time consuming due to the increasing complexity of driver designs. Therefore,

being able to model pre-emphasis drivers is important in signal integrity (SI) analysis of

digital systems.

There exist several techniques for modeling drivers [24]-[33]. The most popular

approach is the I/O buffer information specification (IBIS) model [34] from the

electronics industry alliance (EIA). It is a modeling technique that provides a simple

table-based buffer model for semiconductor devices. IBIS models can be used to

characterize current-voltage (I-V) output curves, rising/falling transition waveforms, and

package parasitic information of the device. IBIS models are based on DC I-V curves

along with a set of voltage-time (V-t) curves of the driver output voltage and packaging

parasitic information of the I/O driver. However, the defined equivalent circuit in IBIS

model decides a-priori the physical effects taken into account, thus leaving limited ability

to capture advanced features of modern I/O drivers. Moreover, this table-based format

has limitations in representing characteristics with multivariate dependency (e.g., port

voltages, control parameters, etc.). IBIS models can also be challenged in accurately

 6

capturing the dynamic characteristics of drivers at high data rates, since the dynamic

characteristics of the driver become predominant when driver excitations become fast.

As alternative approaches for behavioral modeling, parametric and enhanced

models have been proposed [35], [36], providing improved accuracy and variation of

features for modeling I/O drivers of complementary metal oxide semiconductor (CMOS)

technology. These parametric models suggest a two-piece structure, where two sub-

models are used to capture the I-V behavior of the pull-up and pull-down devices

respectively, and are multiplied by weighting coefficients which scale the transient

contributions of the upper and lower devicesô nonlinear current. The weighting

coefficients, either in table format or represented using weighting functions, are

generated corresponding to the bit sequence at the input of the driver, and containing the

timing information of the transition events. However, these models are only applied to

drivers without pre-emphasis.

Based on the above approach, [37]-[39] extend the modeling method to model pre-

emphasis drivers. In these models, the same two-piece model structure are used, and the

pre-emphasis behavior is captured using weighting signals that have the proper shape

incorporating the multiple level states, i.e., normal high, normal low, strong high and

strong low. These implementations assume state transitions are spaced sufficiently in

time so that every new state transition only appears after the I/O driver has reached its

steady state. However, these models do not address the modeling of pre-emphasis drivers

when the bit duration is shorter than the pre-emphasis duration, where the above

assumption is not satisfied.

 7

In [40], a physics-based approach is adopted to construct a table-based empirical

model for the simulation of digital drivers subject to overclocking conditions, where the

identified nonlinear dynamic model operators of the input port replace the concatenated

fixed step-input describing functions of the table-based IBIS model and of other

parametric approaches. However, this modeling approach does not capture the pre-

emphasis characteristics of the driver, and the signals on certain internal nodes of the

transistor-level devices are revealed and manipulated, thereby leaving this gray-box

model unfeasible and exposing IP. Moreover, it cannot be applies to tunable drivers with

control parameters, since the identified nonlinear dynamic model operators are not

suitable for parameterization.

1.2 Summary of Contributions

The objective of this dissertation is to develop time-domain behavioral models for

drivers and oscillators to enable fast simulation and IP protection. For oscillators,

augmented neural networks (AugNNs) are proposed to capture the oscillatory behavior of

fixed-frequency oscillators and VCOs. For drivers, parametric modeling approaches are

used, and the dynamic memory characteristics of the driverôs output stage are captured

using recurrent neural networks (RNNs). The proposed models are compatible with

Verilog-A. In summary, the contributions of the dissertation are listed as follows:

1. Steady-state oscillator modeling. This work proposes time-domain steady-state

behavioral models of fixed-frequency oscillators and voltage-controlled

oscillators, which are not limited to the shapes of the target waveforms.

 8

2. Modeling of oscillators including I/O behavior. With output buffer being part of

an oscillator circuit, the behavior of the buffer needs to be incorporated into the

modeling of the entire oscillator design. This work proposes the modeling of

oscillators with output buffers.

3. Modeling of tunable drivers with pre-emphasis. SI analysis is important in the

design of ICs. Similarly, power integrity (PI) analysis is critical considering that

simultaneous switching noise (SSN) can have significant influence on the

performance of circuits. Therefore, an accurate model for drivers with pre-

emphasis that can be used for both SI and PI analysis is needed. On the other

hand, in some of the modern driver designs, advanced features emerge such as

tunable characteristics with control parameters. The driver model developed

would be of little use unless the tunable characteristics are captured. The

modeling of tunable drivers with pre-emphasis for SI and PI co-simulation is

addressed in this work.

4. Driver modeling for overclocking analysis. When data rate becomes higher and

higher, overclocking will occur when I/O drivers do not have enough time to

reach steady state before the next transition. The existing approaches cannot

accurately capture the overclocking behavior of the I/O drivers. This work

proposes an accurate driver modeling method for overclocking analysis.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 describes the

proposed AugNNs for the modeling of oscillators with constant frequency, multi-phase

oscillators and VCOs. Also in this chapter, AugNN-based models are presented for the

 9

modeling of oscillators with output buffers. In Chapter 3, behavioral modeling of tunable

I/O driver circuits with pre-emphasis for SPI analysis is investigated, where the influence

of the control parameters is taken into account. A modeling methodology for I/O drivers

under overclocking conditions is demonstrated in Chapter 4. Finally, Chapter 5 presents

summary of this work and discussion of some related future work.

 10

CHAPTER 2. STEADY-STATE MODELING OF OS CILLATORS

2.1 Introduction

 The design process of ICs relies on simulations using EDA tools. Performing

these simulations for timing analysis, however, is becoming challenging in terms of the

CPU time required. This is amplified for transistor-level simulations in the design and

optimization phase due to increasing complexity of IC designs. The entire circuit

simulation can be sometimes dominated by certain circuit blocks like oscillators which is

a key component in analog or digital PLLs. Behavioral modeling techniques play an

important role in reducing this complexity as they require less computing resources and

still provide accurate numerical results without disclosing any internal circuitry

information.

 In [21] and [23], behavioral models are developed for oscillators using artificial

neural networks based on state space representation. The output of the oscillator and its

time derivatives represent the state of the system. The time-domain behavior is embodied

by an implicit formulation of the system differential equations which are solved using a

circuit simulator. This state space approach, however, has its limitations. The shape of the

oscillatory waveform is critical for the success of the state space model. Figure 2 shows

an example of a trapezoidal oscillatory waveform. In the plateau region, the oscillator

output stays invariant and all the derivatives go to zero. As a result, itôs impossible to

trigger the transition of the system using the state space approach. In this chapter, a novel

technique is presented for the time-domain behavioral modeling of oscillators using

AugNNs. In the proposed method, a feed-forward neural network (FFNN) with a periodic

unit is developed based on the mathematical formulation of oscillator behavior, where the

periodic unit can capture the periodicity of the oscillatory output waveform, and the

 11

neural network is able to learn the waveform shape properly. Time step values are used as

an input to the neural network to learn the phase information of the oscillation. The

resulting model is a black box that hides the details of a transistor circuit and thus

protects IP.

2.2 Modeling of Oscillator with Constant Frequency

2.2.1 Mathematical Model

 The output waveform of an oscillator with constant frequency in the time-domain

can be expressed as [41]:

ὠ Ὂ ὑ Ὠὸȟ (1)

where KOSC is related to the oscillation frequeny, and F() is a periodic function that

captures the shape of the waveform. In Equation 1, the argument of F(), ὑ Ὠ᷿ὸ, is the

total phase. The phase accumulates at a rate of KOSC, and is mapped to the output using

F(), which is periodic.

 To derive a behavioral model, we reformulate Equation 1 in the discrete-time

domain as:

ὠ ὲ Ὂ ὑ ὨὸὭ ȟ (2)

where n is the time index in the discrete-time domain.

2.2.2 Augmented Neural Network for Oscillators

 12

In behavioral modeling, ANNs are shown to be capable of capturing the

nonlinearities accurately [16]-[18]. ANNs provide mappings which can approximate

input-output nonlinear functions. Since the oscillator is a one-port system, it has no input

signal. However, it can be seen from Equation 1 that the output of the oscillator depends

on the total phase which is a function of time step Ὠὸ. Therefore, time is an important

input for modeling oscillators. Since the phase and time are related and the phase can be

arbitrary, most neural networks have difficulty in capturing the relationship between

phase information and output waveforms for oscillators. To capture the periodic

dependence of the nonlinear behavior of the oscillator for an unbounded total phase, an

AugNN is proposed as shown in Figure 3.

 13

Figure 3 ï Proposed augmented neural network for oscillators.

In the proposed neural network, a periodic unit is introduced and cascaded

between the input layer and the first hidden layer of an FFNN. The input for the network

consists of a chronologically-ordered sequence of time steps dt which is fed into the

periodic unit. Inside the periodic unit, the integral of dt is multiplied by the frequency

parameter K, after which the modulus operation is performed. The responses of the

periodic unit can be computed as:

ώ ὲ ὑ ὨὸὭ άέὨ ρȟ (3)

 14

By doing so, the unbounded total phase is mapped to the folded and normalized phase

within a range of [0, 1). The output of the periodic unit, yp, is fed into the first hidden

layer. The values of the nodes in the hidden and output layers are calculated using Figure

3 as:

ώ ὲ ὸὥὲὬ ώ ὲύ
ȟ
ὦ ȟ (4)

where ὸὥὲὬὼ Ὡ Ὡ ȾὩ Ὡ , ώ is the jth neuron in the current hidden

layer, ώ is the lth neuron of the preceding layer containing ὔ neurons, ύ
ȟ
 is the

weight between them and ὦ is the bias value of the current neuron. Furthermore,

ώ ὲ ώ ὲύ ὦ ȟ (5)

where ώ is the neuron in the output layer, ύ is the weight form the lth neuron of the

precedent layer and ὦ is the bias value of the output neuron, respectively.

2.2.3 Neural Network Training

Let the parameters of the augmented neural network be denoted as ,

Ἷ Ἢὑ , where w is the vector of weights, b is the vector of biases for the neurons, K

is the frequency parameter of the periodic unit, and T denotes transpose. When a set of

training data is fed into the input layer, the output, ώ ὲ, is compared with the desired

output, ώ ὲ, to calculate the training error. The parameters are estimated to minimize

the difference between the network output ώ ὲ and the transistor-level circuit data,

 15

ώ ὲ. Let Nt be the number of time samples in the training dataset. The objective for

training the AugNN model is given by:

ÍÉÎ
ρ

ς
ώ ὲ ώ ὲ Ȣ (6)

In order to employ efficient gradient-based training algorithms, derivatives of the

network output with respect to each parameter in ū are required to form the Jacobian

matrix J. A training scheme based on back propagation (BP) is used to calculate the

derivatives for each layer.

Figure 4 ï Mod function: ◐ ● □▫▀ .

However, there are points of discontinuity in the output of mod function in the

periodic unit. As shown in Figure 4, the function, ώ ὼ άέὨ ρ, is discontinuous when x

has integer values. But it is important to note that the derivative on the left side of the

discontinuity is equal to that on the right side, which is 1 here. The same value can be

assigned to the derivatives of the mod function at the discontinuous points to complete

the Jacobian matrix for the periodic unit, which can be formulated as:

 16

‬ώ ὲ

‬ὑ

‬ώ ὲ

‬ώ ὲ

‬ώ ὲ

‬ὑ

‬ώ ὲ

‬ώ ὲ
 ὨὸὭȢ

(7)

Based on this gradient scheme, gradient-based training algorithms such as the

Levenberg-Marquardt method can be used to train the augmented neural network model.

Once the model is trained, it can be implemented in Verilog-A.

2.2.4 Modeling Examples

To quantify the accuracy of the behavioral model, a figure of merit (FOM) is

defined as:

Ὂὕὓ ρππϽρ
В ȿὠὶὩὪὠὈὟὝȿ

ῳὠϽὔ
ȟ (8)

where ὠὶὩὪ and ὠὈὟὝ are the simulation output voltage data of the transistor-level

model and the behavioral model, ῳὠ is the reference output voltage range, and N is the

number of data points [42].

Test case 1: In order to demonstrate the accuracy of the proposed AugNN model,

test cases are generated using transistor-level inverter ring oscillator models provided in

[43]. The generic schematic is shown in Figure 5. The training data is generated using

Spectre [43].

 17

Figure 5 ï Schematic of a typical inverter ring oscillator.

In the first test case, a 0.1689 GHz inverter ring oscillator was designed. The

transistor-level simulation data is used to train the AugNN with random initializations.

The one time training process costs 2~3 min. In Figure 6, the output waveform achieved

using the behavioral model with a hidden layer consisting of 10 neurons is compared to

the transistor-level model output. It can be seen that the behavioral model is accurate and

matches well with the actual inverter ring oscillator voltage waveform, and a FOM value

of 99.85 is achieved. Figure 7 shows the training results of the frequency parameter K,

which converges to 0.1689×10
9
 after several training iterations. The behavioral model

achieves ~10X speed-up in simulation time compared to the transistor-level Spice

oscillator circuit.

 18

Figure 6 ï Test case 1 output waveforms for transistor-level oscillator model

(straight line) and behavioral model (dotted line).

Figure 7 ï Plot of the frequency parameter K during the training process.

Test case 2: In this test case, a behavioral model of a 0.5743 GHz inverter ring

oscillator is generated. The network model has a hidden layer of 10 neurons. As shown in

Figure 8, the output waveform of the behavioral model matches accurately with the

transistor-level circuit output, and a FOM value of 99.90 is achieved.

 19

Figure 8 ï Test case 2 output waveforms for transistor -level oscillator model

(straight line) and behavioral model (dotted line).

Test case 3: In this test case, a modeling example of multi-phase oscillator is

demonstrated. A quadrature ring oscillator as shown in Figure 9 is used for model

validation [44], [45]. The oscillator is free running with a constant frequency and has four

outputs. There is a phase shift of 90° between each successive output. Based on the

proposed modeling methodology, for multi-output oscillators, an AugNN model is

developed as shown in Figure 10. Since the outputs of the oscillator are highly correlated

to each other with respect to the oscillation frequency, an AugNN architecture with the

same periodic unit shared by the network outputs is necessary.

 20

Buf Buf Buf Buf

V I VQ V IB VQB

Figure 9 ï Schematic of a quadrature oscillator.

³

mod 1

Ú ɤdt

ɤ

dt(n)

Time step

Periodic Unit

yp

V I

V IB

VQB

VQ

Figure 10 ï AugNN model for the quadrature oscillator.

The network model has a hidden layer consisting of 15 neurons, and 4 output

neurons corresponding to the quadrature outputs of the oscillator. The training data is

generated from transistor-level simulation using Spectre. The network parameters are

initialized randomly. A training mean squared error (MSE) of 6.25E-6 is achieved after

several iterations, and the frequency parameter converges to 3.2249 GHz. After training,

the model is implemented in Verilog-A, and simulated using Spectre. Figure 11 shows

the output waveforms of the transistor-level model and the behavioral model, where a

 21

good match can be observed with an MSE of 6.54E-6, and a FOM value of 99.82 is

achieved.

Figure 11 ï Output waveforms for the transistor-level model and the behavioral

model of the quadrature oscillator.

2.3 Modeling of Oscillator Including I/O behavior

In ICs, buffers are widely used as the interface between the internal circuit core

and the load at the output. Since the buffers are unidirectional, the voltage and current at

the output port have little influence on the internal activity. In oscillator designs, output

buffers can be employed to minimize loading of the oscillator core and generate high

quality signals with enhanced drive strength. Figure 12 shows a scenario where a buffer

is included in the oscillator design.

 22

Vdd

Vss

Output bufferOscillator core

vx
io

vo

Oscillator circuit

Figure 12 ï Oscillator circuit in cluding output buffer .

The model illustrated above, however, does not take into account output buffer

behavior and the associated load variations. The model needs to be extended to address

the modeling of oscillators with output buffers. In this section, an AugNN-based model is

discussed, where the nonlinear dynamic behavior of the output buffer is taken into

account using RNNs, and an AugNN with multiple output units is used to capture the

oscillatory weighting functions controlling the transitions of the buffer.

2.3.1 Buffer Modeling

For a buffer circuit, the current at the output port can be expressed as [35], [37]:

Ὥὸ ύ ὸὭ ὸ ύ ὸὭὸȟ (9)

where Ὥ ὸ and Ὥὸ are nonlinear dynamic submodels accounting for the output current

of the last stage of the buffer when the buffer input, ὺ, is at the high (H) and low (L)

voltage state respectively, and ύ ὸ and ύ ὸ are the weighting functions that help the

 23

transitions between the two sub-models. In Equation 9, sub-model function, Ὥὸ, can be

defined using parametric relations as:

Ὥὸ Ὥὺ ὸȟἎȟ ὲ Ὄȟὒȟ (10)

where ὺ ὸ is the output voltage, and Ἆ represents the dependence of sub-model current

on the previous values of the signals, Ὥ and ὺ.

Figure 13 ï Buffer output current for input HIGH from transistor -level model (solid

line) and from RNN model (dotted line).

For a nonlinear buffer circuit, when the buffer operation is fast, the dynamic

characteristics of the buffer become predominant, as shown in Figure 13 where a

piecewise-linear voltage source is connected at the buffer output port and the buffer input

is set high. In such cases, sub-models need to be capable of capturing the nonlinearity

associated with the dynamic response of the driver. RNNs, which include feedback paths

allowing for taking into account the previous samples, are shown to be capable of

modeling nonlinear dynamic circuits [19], [37]. To efficiently capture the memory effects

 24

and the nonlinear dynamic behavior of the buffer, the previous time instances of the

buffer output voltage and current are considered and the sub-models can be learnt as

RNN models:

Ὥὸ Ὥ
ὺ ὸȟὺ ὸ Ὤȟȣȟὺ ὸ ὶὬ

Ὥὸ ὬȟȣȟὭὸ ὶὬ
ȟ

 Î (ȟ,ȟ

(11)

where ὺ is the output voltage, Ὤ is the sampling time step, and ὶ is referred to as the

dynamic order of the model, which usually has a value of 1 or 2 for typical buffers [35].

It can be seen from Figure 13 that with the inclusion of two previous time instances, the

output current values learnt by the RNN sub-model match accurately with the transistor-

level simulation results.

For the weighting functions, ύ ὸ and ύ ὸ, the models in [35] and [37]

assume time concatenation of the successive transients triggered by the different input

state transitions. This approach, however, does not apply to oscillators since they do not

have any input signals. On the other hand, the approach of directly connecting the

oscillator model to the buffer model may not work well, when the oscillation frequency is

high where there is not enough time for the buffer to reach steady state before each

transition. Therefore, a different method of extracting and modeling the weighting

functions is required.

2.3.2 AugNN-based Model

 25

Based on the above discussion, an AugNN-based model is proposed for

oscillators with buffers, as shown in Figure 14, where the periodicity of the oscillatory

weighting functions is captured using an AugNN with multiple output units and the

nonlinear dynamic behavior of the output stage is captured using RNN sub-models. The

input for the AugNN consists of a chronologically-ordered sequence of time steps which

is mapped to the folded and normalized phase within a range of πȟρ by the periodic unit

[22]. At the output layer, the AugNN generates the weighting coefficients, ύ ὸ and

ύ ὸ, which scale the transient contributions of the upper and lower devicesô sub-model

current sources, Ὥ ὸ and Ὥ ὸ, at the buffer output port. It is important to note that

the use of one AugNN with multiple output units is necessary to ensure the two

weighting functions oscillate at the same frequency by sharing the same periodic unit.

io(t)

wH(t)

wL(t)
vo(t)

³ mod 1Ú dt

()RNN

Hi t

()RNN

Li t

ɤ

dt(n)

Time step

AugNN

Periodic unit

³

³

+

Figure 14 ï Proposed AugNN-based model for oscillators including output buffers.

The training of the proposed model consists of two parts:

1) RNN sub-models: The training of the RNN sub-models can be carried out by

connecting a multilevel piecewise-linear voltage source at the buffer output port to

generate the excitation identification signals as shown in Figure 13, with the buffer input,

ὺ, fixed at HIGH and LOW respectively [35], [37]. Once the data is collected, RNNs in

(11) are trained accordingly to learn the sub-models.

 26

2) AugNN: After the sub-models are obtained, the oscillatory weighting

coefficients need to be extracted for AugNN training. This can be done by running the

oscillator with the buffer output port connected to two different loads ὤ and ὤ, e.g., a

50-ɋ resistor for load ὤ and the series connection of a ὠ voltage source and a 50-ɋ

resistor for load ὤ. The weighting coefficients can be extracted using the method of

matrix inversion [35], [37]. Once the weighting functions are extracted, the AugNN can

be trained using the gradient-based training algorithms in [22] modified for multiple

output neurons. After the training, the behavioral model is implemented in Verilog-A.

2.3.3 Modeling Example

Vdd

Vss

Output

Figure 15 ï Ring oscillator circuit including an output buffer .

 27

Figure 16 ï Weighting functions extracted (solid line) and learnt by the AugNN

(dotted line).

To demonstrate the accuracy and efficiency of the proposed model, a modeling

example is generated using a transistor-level ring oscillator circuit including an output

buffer as shown in Figure 15. The transistor-level simulation data generated using

Spectre is used to train the model. The RNNs for sub-models contain 10 neurons in the

hidden layer. Based on the method described in the previous section, the weighting

coefficients are extracted as shown in Figure 16. A training root-mean-squared error

(RMSE) of 0.0034 is achieved using an AugNN with a hidden layer consisting of 15

neurons. The oscillation frequency is learnt by the AugNN as the parameter, in the ,‫

periodic unit, which is 1.9481 GHz. The RNNs and AugNN are then implemented as a

Verilog-A model.

 28

Vdd

Vss

Out

Oscillator circuit

CR

Figure 17 ï Test setup for model validation.

Figure 18 ï Output voltage waveform from transistor -level model (solid line) and

from behavioral model (dotted line).

To test the performance of the trained model, the oscillator circuit is connected to

a load resistor of 75 ɋ and a capacitor of 1.5 pF in parallel as shown in Figure 17, and

simulated in Spectre. It can be seen from Figure 18 that the simulation results of the

behavioral model match well with the transistor-level model. A FOM value of 98.047 is

achieved in Figure 18, and the behavioral model achieves a reduction in simulation time

of up to 96%.

 29

2.4 Modeling of VCOs

2.4.1 Mathematical Model

The steady-state time-domain output waveforms of a VCO with multiple output

ports can be expressed as:

ὠ ȟ ὸȟὠ ȟ ὸȟȣȟὠ ȟ ὸ Ὂ ‫ὸὨὸȟ (12)

where ‫ὸ is the instantaneous frequency, ὔ is the number of outputs, and Ὂ is a

periodic function that captures the shape of the waveforms. Specifically, for an oscillator

with fixed frequency, ‫ὸ is a function of the ,‫ὸ is a constant, whereas, for a VCO

frequency control voltage, i.e., ‫ὸ Ὃὺ ὸ [41]. In Equation 12, the function

argument, ᷿.‫ὸ ‫ὸὨὸ, is the total oscillation phase, which accumulates at a rate of

The phase is mapped to the output through Ὂ , a periodic function with respect to phase.

To derive a behavioral model, we reformulate Equation 12 in the discrete-time

domain as:

ὠ ȟ ὲȟὠ ȟ ὲȟȣȟὠ ȟ ὲ Ὂ ‫ὭὨὸὭ ȟ (13)

where ὲ is the time index in the discrete-time domain.

2.4.2 Augmented Neural Network for VCOs

 30

From Equation 13, we can see that the output of a VCO is a function of the total

oscillation phase, which can be obtained by integrating the product of the instantaneous

frequency and the time step dt. Therefore, time is an inherent input for modeling ‫

oscillators. However, the total oscillation phase is unbounded, since the phase can be

arbitrarily large along with the increase of time. As a result, most neural networks will

fail to capture the phase-output relation of oscillators, since the unbounded input values

cannot be properly handled. Moreover, for oscillators with multiple ports, the outputs are

highly correlated with each other in terms of phase. This correlation must be strictly

retained in the behavioral model to avoid any mismatch in their instantaneous

frequencies. To overcome these difficulties, a multi-output AugNN is proposed as shown

in Figure 19, where a periodic unit is introduced. In the following discussion, it can be

seen that, given the model formulations for VCOs, the model for fixed-frequency

oscillators is a subset with the frequency .‫ὸ being constant

³

mod 1

Ú ɤdt

ɤ

dt(n)

Time step

...

Periodic Unit

vc(n)

Control voltage

yp

Second

FFNN

Hidden layers Output layer

yout,1

yout,2

yout,Ny

Main FFNN

Figure 19 ï Proposed AugNN model for VCOs.

 31

The input for the proposed AugNN consists of the chronologically-ordered

sequence of time steps dt and the control signal which are fed into the periodic unit. The

function of the periodic unit is to learn the instantaneous frequency and generate bounded

oscillation phase. Since the frequency is a function of the control voltage without time

dependency, this can be done by first capturing :using an FFNN as ‫

‫ὲ Ὣ ὺ ὲ ȟ (14)

where Ὣ represents the formulation of the FFNN inside the periodic unit. Then the

product of the instantaneous frequency and the time step dt is integrated to obtain the ‫

total oscillation phase, after which the modulus operation is performed to map the

unbounded total oscillation phase to the folded phase that is normalized within a range of

πȟρ. The responses of the periodic unit can be computed as:

ώ ὲ ‫ὭὨὸὭ άέὨ ρȢ (15)

The output of the periodic unit, ◐▬, and the control signal, ○╬, are used as the input of the

main FFNN. For an AugNN with multiple outputs, let ὔ be the total number of the

output neurons, and ώ ȟ ὲ be the kth output signal at the nth time sample. The values

of the nodes in the output layer of the main FFNN are calculated using Figure 19 as:

ώ ȟ ὲȟώ ȟ ὲȟȣȟώ ȟ ὲ Ὢ ώ ὲȟὺ ὲ ȟ (16)

 32

where Ὢ represents the formulation of the main FFNN. For the main and second

FFNNs, the hyperbolic tangent function, ÔÁÎÈὼ Ὡ Ὡ ȾὩ Ὡ , is used as

the activation function for the hidden neurons.

2.4.3 AugNN Training

The training of the network is the process of tuning the network parameters to

minimize the difference between the transistor-level circuit data ◐▫◊◄ὲ and the network

output ◐▫◊◄ὲ, which is defined as the squared error here. For training the multi-output

AugNN, the objective function is given by:

ÍÉÎ
ρ

ς
ώ ȟ ὲ ώ ȟ ὲ ȟ (17)

where ὔ is the number of time samples in the training dataset. Itôs important to note that

the training data fed into the network must be in the chronological order to make sure the

phase integration is calculated correctly. Let the parameters of the AugNN be denoted as

, ἿἙ ἪἙ ἿἜἣἪἜἣ , where ἿἙ and ἪἙ are the vectors of the weights and

biases of the main FFNN, ἿἜἣ and ἪἜἣ are the vectors of the weights and biases of the

second FFNN inside the periodic unit, and T denotes transpose. Gradient-based training

algorithms can be used to optimized the network parameters, where the Jacobian matrix J

is computed using the BP method to calculate the derivatives of the network outputs with

respect to each parameter in . The derivatives of the FFNNs can be computed by

normal BP [16].

 33

()dt n
()nw

1rw =

inty

Úɤ(t)dt

Figure 20 ï Recurrent node representation of the integral node in the periodic unit.

Particularly, the integral operation in the periodic unit can be represented

equivalently using a recurrent node with a fixed recurrent weight of one, as shown in

Figure 20. Based on this representation, the integral output, ώ , is iteratively computed

as:

ώ ὲ ώ ὲ ρ ‫ὲὨὸὲȢ (18)

However, there are discontinuity points brought by the modulus operation ώ ὼ άέὨ ρ

in the periodic unit, where x has integer values. In order to overcome this discontinuity

difficulty, the value of one can be used as the derivatives of the mod function at the

discontinuous points, which is equal to the derivatives on both the left and the right sides

of the discontinuity. The derivatives for the periodic unit can be formulated as:

‬ώ ȟ ὲ

‬ Ἔἣ

‬ώ ȟ ὲ

‬‫ά

‬‫ά

‬ Ἔἣ
ȟ (19)

where Ἔἣ ἿἜἣἪἜἣ is the vector of the parameters of the periodic unit, ‬‫άȾ

‬ Ἔἣ can be computed for the second FFNN using BP method, and

 34

‬ώ ȟ ὲ

‬‫ά

‬ώ ȟ ὲ

‬ώ ὲ

‬ώ ὲ

‬‫ά

‬ώ ȟ ὲ

‬ώ ὲ
 Ὠὸάȟρ Í Îȟ

(20)

where ‬ώ ȟ ὲȾ‬ώ ὲ can be computed for the main FFNN using BP method. After

this procedure, the Jacobian matrix of the kth output can be formulated as:

J

ụ
Ụ
Ụ
Ụ
ợ
‬ώ ȟ ρ

‬ Ἑ

‬ώ ȟ ς

‬ Ἑ
Ễ
‬ώ ȟ ὔ

‬ Ἑ

‬ώ ȟ ρ

‬ Ἔἣ

‬ώ ȟ ς

‬ Ἔἣ
Ễ
‬ώ ȟ ὔ

‬ Ἔἣ Ứ
ủ
ủ
ủ
Ủ

ȟ (21)

where Ἑ ἿἙ ἪἙ is the vector of parameters of the main FFNN. The entire

Jacobian matrix is then given by:

J J J Ễ J Ȣ (22)

Using this gradient scheme, the gradient-based training algorithms, the Levenberg-

Marquardt method, can be applied to train the AugNN model, and the corresponding step

 for updating the network parameters in each training iteration can be calculated as [46]:

JJ ‘ἓ JἹȟ ‘ πȟ (23)

where I is the identity matrix, ‘ is the damping parameter, and

Ñ Ñ Ñ Ễ Ñ ȟ (24)

 35

where

Ñ

ụ
Ụ
Ụ
ợ
ώ ȟ ρ ώ ȟ ρ

ώ ȟ ς ώ ȟ ς
ể

ώ ȟ ὔ ώ ȟ ὔ Ứ
ủ
ủ
Ủ

Ȣ (25)

After training, the AugNN model can be implemented as a Verilog-A model.

2.4.4 VCO Modeling Example

To demonstrate the accuracy of the AugNN model, a modeling example is

generated using a transistor-level VCO circuit model that has the lowest frequency of

0.216 GHz and the highest frequency of 0.306 GHz with the control voltage ὺ ranging

from 1 V to 3 V. Its simplified schematic is shown in Figure 21.

Figure 21 ï Simplified schematic of the target VCO.

 36

As can be seen that the VCO circuit has single output port. Therefore, the

proposed AugNN can be simplified with single output unit as shown in Figure 22. The

training data is generated using Spectre with ὺ varying from 3 V to 1 V in steps of -0.2

V as shown in Figure 23. When the root-mean-squared error is expressed as a percentage

of the peak-to-peak amplitude, a training RMSE/p-p of 0.61% is achieved using an

AugNN containing 20 neurons in the first and 10 neurons in the second hidden layer of

the origianl FFNN, and 5 neurons in the single hidden layer of the second FFNN in the

periodic unit. The one time training process costs around 5 min.

Figure 22 ï AugNN with single output unit for VCO modeling.

 37

Figure 23 ï Training waveforms of control voltage (thick solid blue line), and the

output of transistor-level (thin red line) and behavioral model (dotted line).

Figure 24 ï Test waveforms of control voltage (thick solid blue line), and the output

of transistor-level (thin red line) and behavioral model (dotted line).

To test the performance of the trained model, a frequency sweep is applied by

continuously changing ὺ between its maximum and minimum as shown in Figure 24.

Good agreement between the output of the behavioral and transistor-level model can be

